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Abstract—Future systems will have to support multiple and
concurrent dynamic compute-intensive applications, while re-
specting real-time and energy consumption constraints. To over-
come these computation needs, only multithreaded approaches
are possible. Thus, the support of a streaming execution model is
very important for dataflow applications. However, with dynamic
applications, each execution stage is prone to execution time
variations. The sizing of these highly complex MPSoC architec-
tures becomes difficult. In such a context, flexible and accurate
simulators become a necessity for exploring the vast design
space solution. In this paper, we use the SESAM environment
to ease the architectural exploration of asymmetric MPSoCs for
dynamic streaming application processing. This paper focuses
on the new programming and execution model supported by the
simulator, and studies performances obtained with a WCDMA
encoder/decoder application implemented on a complete MPSoC
platform.

I. INTRODUCTION

The emergence of new embedded applications for telecom,

automotive, digital television and multimedia applications, has

fueled the demand for architectures with higher performances,

more chip area and power efficiency. These applications

are usually computation-intensive, which prevents them from

being executed by general-purpose processors. Architectures

must be able to simultaneously manage concurrent informa-

tion flows; and they must all be efficiently dispatched and

processed. This is only feasible in a multithreaded execution

environment. Designers are thus showing interest in System-

on-Chip (SoC) paradigms composed of multiple computation

resources and networks that are highly efficient in terms of

latency and bandwidth. The resulting new trend in architectural

design is the MultiProcessor SoC (MPSoC) [1].

Another very important feature of future embedded

computation-intensive applications is the dynamism. Algo-

rithms become highly data-dependent and their execution time

depend on their input data, since decision processes must also

be accelerated. Consequently, on a multiprocessor platform,

optimal static partitioning cannot exist since all the processing

times depend on the given data and are prone to non-uniform

data accesses. In [2], it is shown that the solution consists

in dynamically allocating tasks according to the availability

of computing resources. Global scheduling should maintain

a balanced system load and support workload variations that

cannot be known off-line. Moreover, the preemption and

migration of tasks dynamically balance the computation power

between concurrent processes.

One possible approach to parallelize an application is to

pipeline its execution. This programming and execution model

suits well for data oriented applications that consider a contin-

uous flow of data. An asymmetrical approach can implement

a global scheduling and efficiently manage dynamic streaming

applications. An asymmetric MPSoC owns a centralized con-

trol manager that handles the application execution, and can

distribute the pipeline stages among computing resources.

In a previous work [3], we have developed the SESAM tool

to help the design of new asymmetric MPSoC architectures.

This tool allows the exploration of MPSoC architectures and

the evaluation of many different features (effective perfor-

mance, used bandwidth, system overheads...). In this paper,

we extend SESAM to support streaming execution. With this

important feature, SESAM becomes able to explore different

MPSoC solutions and dataflow application implementations.

With the study of a WCDMA encoder/decoder implementation

on a complete asymmetric MPSoC architecture, we will vali-

date our work and understand what impacts the performances

and limits streaming executions.

This paper is organized as follows: Section II covers re-

lated works on MPSoC simulators from both industrial and

academic worlds. Then, section III gives an overview of

the initial SESAM environment. Section IV presents its pro-

gramming model, while section V focuses on new SESAM’s

features to support pipelined dataflow applications, from the

programming to the execution model point of view. Section VI

illustrates the performance results obtained by running a real

case embedded application on a complete MPSoC architecture

implemented with SESAM. Finally, section VII concludes the

paper by discussing the presented work.

II. RELATED WORK

Lots of works have been published before on single-

processor, multiprocessor and full-system simulators [4], [5].

Some of them focus on the exploration of specific resources.

For instance, Flash [6] eases the exploration of different

memory hierarchies, or SICOSYS [7] studies only different

Network-on-Chips (NoCs). Taken separately, these tools are



very interesting but a complete MPSoC exploration environ-

ment is needed in order to analyze all architectural aspects

under real application processing case.

Among complete MPSoC simulators, MC-Sim [5] uses a va-

riety of processors, memory hierachies or NoC configurations

but remains cycle-accurate. On the contrary, simulators like

STARSoC [8] offer a rapid design space exploration but only

consider functional level communications. To study network

contentions and the impact of communication latencies, a

timed simulation is necessary. Others, like ReSP [9], use

generic processors and cannot take into account instruction

set specificities. This does not allow to size and to validate

MPSoC architectures. On the contrary, some simulators, like

MPARM [10], are processor specific and do not allow the ex-

ploration of different memory system architectures or different

processors, and hence lacks flexibility. In addition, MPARM

requires AMBA compatible IPs to be integrated in the design,

which requires the development of specific wrappers.

Some of the simulators benefit from the genericity of a very

high description level, like Sesame [11] or CH-MPSoC [12].

They use a gradual refine Y-Chart methodology to explore

the MPSoC design space. However, even if they remain very

promising tools, they cannot support complex IPs or MPSoC

structures with advanced networking solutions. Generated ar-

chitectures remain very constrainted. Less generic projects

exist, like SoCLib [13], but their scope are too limited to

fulfil MPSoC exploration and in particular they cannot support

automatic MPSoC generation to analyze its parameters.

Some very interesting projects [14], [15] make a model of

a large set of MPSoC platforms. Nonetheless, these solutions

do not propose a rich set of Network-on-Chips (NoCs), and

it is not possible to easily integrate a centralized element

to dynamically allocate tasks to resources. The programming

model consists in statically allocating threads onto processors,

and does not allow the design of architectures optimized for

dynamic applications.

Finally, to the authors’ knowledge, there is no published

work on a simulator that supports asymmetric MPSoC ar-

chitectures and allows MPSoC exploration for dataflow and

dynamic applications. Simulating a whole MPSoC platform

requires to find an adequate trade-off between simulation speed

and timing accuracy.

III. SESAM OVERVIEW

SESAM is a tool that has been specifically built up to ease

the design and the exploration of asymmetric multiprocessor

architectures [3]. This tool is made of a set of instruction

set simulators (MIPS, PowerPC, Sparc), networks-on-chips

(multibus, mesh, torus, multistage, ring), a DMA, a memory

management unit, caches, memories and different control

solutions to schedule and dispatch tasks. We can also study

the pipeline length impact of processing elements [16]. All the

simulators provided blocks can be timed.

SESAM can also be used to analyze and optimize the ap-

plication parallelism, as well as control management policies.

This framework is described with the SystemC description lan-

guage, and allows MPSoC exploration at the TLM level with

fast and cycle-accurate simulations. It supports co-simulation

within the ModelSim environment [17] and takes part in the

MPSoC design flow, since all the components are described

at different hardware abstraction levels.

Besides, SESAM uses approximate-timed TLM with ex-

plicit time to provide a fast and accurate simulation of highly

complex architectures. This model, described in [18] uses the

Transactional Level Modeling (TLM) approach coupled with

timed communications. This solution allows the exploration of

MPSoCs while reflecting the accurate final design. Regarding

the communications, we point out a 90 % accuracy compared

to a fully cycle-accurate simulator. Time information is nec-

essary to evaluate performances and to study communication

needs and bottlenecks.

To ease the exploration of MPSoCs, all the components

and system parameters are set at run-time from a parameter

file without platform recompilation. It is possible to define

the memory map, the applications that must be loaded, the

number of processors and their type, the number of local

memories, their size, the parameters of the instruction and

data caches, memory latencies, network latencies, network

topologies (torus, ring, mesh...) etc. More than 160 parameters

can be modified. Moreover, each simulation brings more than

250 different platform statistics. That helps the designer size

the architecture. For example, SESAM collects the miss rate

of the caches, the memory allocation history, the processor

occupation rate, the number of preemptions, the time spent

to load or save the context of tasks, or the effective used

bandwidth of each network.

A script can be used to automatically generate several sim-

ulations by varying different parameters in the parameter file.

An Excel macro imports these statistics to study their impact

on performances. In addition, SESAM offers the possibility

to automatically dispatch all the simulations to different host

PCs. For example, 400 simulations can be carried out with 12

hosts in less than one hour and a half [3].

Debugging the architecture is possible with a specific GNU

GDB [19] implementation. In the case of a dynamic task

allocation modeling, it is not possible to know off-line where

a task will be executed. Therefore, we build up a hierarchical

GDB stub that is instantiated at the beginning of the simula-

tion. A GDB instance, using the remote protocol, sends spe-

cific debug commands to dynamically carry out breakpoints,

watchpoints, as well as step by step execution, on an MPSoC

platform. This unique multiprocessor debugger allows the task

debugging even with dynamic migration between the cores.

Moreover, it is possible to simultaneously debug the platform

and the code executed by the processing resources.

IV. INITIAL PROGRAMMING MODEL OF SESAM

The programming model of SESAM is specifically adapted

to dynamic applications and global scheduling methods. Ob-

viously, it is inconceivable to carry out a generic program-

ming model for all asymmetrical MPSoCs. Nonetheless, it is



possible to add new programming models. The programming

model is based on the explicit separation of the control and the

computation parts. As depicted in Figure 1, each application

must be manually (the tool chain is still under development)

parallelized and cut into different tasks. Mainly, tasks are cut

according to loop nests and dependencies must be explicitly

expressed.
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Figure 1. SESAM programming model

With this programming model, a specific Hardware Ab-

straction Layer (HAL) is provided to manage dynamic data

memory allocations (Table I). It can be extended to explore

other memory management strategies. This HAL provides

memory allocation, read/write shared memory access and

debugging functions. Each data is defined by a data identifier,

which is used to dialog between the memory management

unit and the computation tasks. For instance, the function

call sesam data assignation(10,4,2) allocates 4 pages for the

data ID 10 with 2 consumers for this data. The function call

sesam write data(10,&c,4) writes the word c starting from the

4
th byte of the data ID 10.

HAL functions Description

Memory allocation functions

sesam reserve data() reserve pages for a future allocation
sesam data assignation() allocate the data

sesam free data() deallocate the data
sesam chown data() change the owner of the data

Data access functions

sesam read(), sesam write() read or write the content of a data
sesam read burst() read a finite number of bytes
sesam write burst() write a finite number of bytes
sesam read byte() read a byte
sesam write byte() write a byte

Debug function

sesam printf() display debug on a terminal

Table I
INITIAL HARDWARE ABSTRACTION LAYER OF SESAM

Each embedded application can be divided into a set of

independent threads, from which explicit execution depen-

dencies are extracted into a control task. Then, each thread

can be divided into a set of finite computation tasks. A

computation task is a standalone program. The greater the

number of extracted independent and parallel tasks, the more

the application can be accelerated at runtime. This acceleration

comes at the expense of the control overhead. Then, a manual

partitioning must be carried out in case of heterogeneous

MPSoCs. Heterogeneous resource management takes place

before the task compilation. Finally, all tasks are compiled for

the processing resources or the control manager. Depending

on the hardware platform to explore, the designer can use the

SESAM HAL or explicit physical addresses without memory

virtualization.

The control task is a Control Data Flow Graph (CDFG)

extracted from the application, which represents all control and

data dependencies. The control task handles the computation

task scheduling and other control functionalities, like synchro-

nizations and shared resource management. It can preempt and

migrate tasks to balance computing resource’s load between

homogeneous resources. A dedicated and simple assembly

language is used to describe this CDFG and must be manually

written. Each control task, for each different application, needs

to define: the number of computation tasks, the binary file

names corresponding to these tasks, and their necessary stack

memory size. Then, we must specify which are the first and

last tasks of the application. We must also describe each CDFG

transition. Finally, for real-time task scheduling, the deadline

of the application, as well as the worst case execution time

of each task, must be defined. The processor type of each

task is also specified and this information is used during the

allocation process. Only this representation of the control task

is necessary for each available controller, whereas a specific

compilation tool is used for the binary generation. Each task

is defined by a task identifier, which is used to dialog between

the control and the computation parts.

V. STREAMING PROGRAMMING AND EXECUTION MODEL

The support of the streaming execution requires various

modifications of the SESAM simulator. First of all, the pro-

gramming model must be enriched with new functionalities to

allow local synchronizations between tasks. Then, the memory

management unit must be modified, as well as the kernel to

support the scheduling of streaming applications.

With a streaming execution, the most important feature is

the management of shared buffers between the pipeline stages.

A consumer must wait for the shared data to be written before

reading it, in order to keep coherent data. This requires the

implementation of a specific protocol. Then, to maximize the

parallelism in the pipeline and ensure sufficient concurrent

executions, the granularity of data synchronizations must be

well-sized. A fine-grain synchronization level generates an

important hardware and control overhead to implement all

semaphores used to store the access status information. For

this reason, we decided to synchronize all shared data accesses

at the page level. This is a simple and practical implemen-

tation of a streaming support, but remains different from

direct handshaking works that have been done in [20]. Our

synchronization mechanisms are less intrusive and not blocked

by acknownledges. Besides, all this extra control will generate

a task execution overhead that will have to be evaluated, in

order to validate the efficiency of this execution model.



In the SESAM framework, the memory space can be

implemented with several banks or a single memory. Memory

segments are protected and reserved for the Control Manager.

The Memory Management Unit (MMU) manages the memory

space and shares it between all active tasks. To support all page

synchronizations, we implemented two new functions named

sesam wait page and sesam send page (Table II). The first

function is a blocking wait method. The task waits for the

disponibility of a page in only read or write mode. When all

consumers have sent a write availability, the second function is

used to inform the memory management unit that the content

of the page is ready to be read, or that its content has become

useless for the consumer task. The memory management unit

can then release the page access rights and accept future

writes, .

HAL functions Description

Page synchronization functions

sesam wait page() wait for the availability of a page
sesam send page() page is ready to be read or written

Table II
NEW HARDWARE ABSTRACTION LAYER FUNCTIONALITIES OF

SESAM

When a sesam send page is sent to the MMU, the status of

the page is updated. If the page was in a write mode, the com-

sumer number is checked and updated. To distinguish multiple

requests of a single task from multiple consumers’ requests, a

consumer list is maintained for each page. When all consumers

have read the page, the page status changes and it becomes

possible to write again into it. When a sesam wait page is

sent to the MMU, the request is pushed into a wait dispo list

request and the information is sent to the controller. As soon as

the page becomes available, the MMU sends to the processor

an answer that unlocks the waiting sesam wait page function.

Because a task can dynamically be preempted by the controller

and migrated to another processing element, the MMU must be

able to address the processor executing the waiting task. Thus,

a sesam wait page is sent again when the task is resumed on

the new processor in order to update the processing element

address.

This hand-shake protocol is a semaphore-like processing

and guarantees the data coherency. In addition, deadlocks are

avoided since it is a dataflow model similar to Kahn Processes

[21]. The main difference with KPNs is that synchronizations

are centralized in order to bring more flexibility and allow

the task migration. The MMU supports these functionalities

through several control Finite State Machines (FSM). A status

memory is implemented to store the read/write status, the

producer task identifier, the processing element address and

the list of consumers. A specific Content Adressable Memory

(CAM) is used to address this status memory with the data

identifier and the page number.

Finally, the kernel executed by the control processor has

to be modified. When a task waits for the availability of a

page, its status is changed to be preempted by another task.

This prevents the inter-blocking and the under-utilization of

processing resources, since only the effective execution of

tasks is important. In addition, a priority level must be defined

in the control task for all the pipeline’s tasks in order to impose

a priority to downstream tasks, i.e. tasks that are deeper in the

pipeline have the priority over tasks that are found earlier in the

pipeline. After the task execution analysis, this strategy shows

a very important improvement in terms of preemptions, hence

overall performances.

With all these new capabilities, the SESAM framework

is able to carry out local control synchronizations, in order

to let concurrent tasks share intermediate data. This new

streaming execution model can be used to parallelize dataflow

applications, and can be mixed with the initial constrained-

task execution model. With both execution models, all the task

parallelism techniques are supported in SESAM at the system

level. Now, we have to analyze and quantitatively evaluate

the control and task execution overhead due to the streaming

execution, so that it becomes valuable.

VI. RESULTS

To demonstrate the SESAM’s capabilities to support the ex-

ecution of dataflow applications, we have used this framework

to carry out a complete MPSoC architecture.

As shown in Figure 2, this architecture is made of homo-

geneous MIPS32 processing elements (MIPS32R2 ISA com-

pliant functional ISSs) and two DMAs for the communication

with the external data memory. These devices communicate

with 64 shared memories through a 64-bit multibus data

network, where each memory bank is 16KB. These memories

are locally shared and physically distributed. The data network

and memory latencies are 2 cycles. All the processors use two

private instruction and data caches. Each cache is 2KB, 4-way

set associative, and implements a write-back and write-allocate

protocol. The external network-on-chip (NoC) is a 2-cycle-

latency 32-bit simple bus with a round-robin arbiter. External

memories have a latency of 4 cycles. All latencies have been

evaluated through partial TSMC 45 nm ASIC synthesis and

normalized in relation to the PE frequency. The central control

manager is also a MIPS32 processor with two instruction

and data caches. It executes a microkernel, which supports

the dynamic scheduling and allocation of tasks on PEs. An

interrupt controller is used to communicate with the computing

resources. The architecture is also composed of a code loading

unit (CLU) that can prefetch task instruction codes into shared

memories, as well as the modified memory management unit

(MMU), which has been previously presented. The memory

space is cut into 256-byte pages. All devices are timed and

only communications are approximate-timed transactions.

The implemented application is a complete Wide-band Code

Division Multiple Access (WCDMA) encoder and decoder

[22]. This communication technology is based on the use of

Orthogonal Variable Spreading Factor (OVSF) to allow several

transmitters to send information simultaneously over a single

communication channel. This application uses a rake receiver

with a data aided channel estimation method.



Figure 2. SESAM infrastructure

Known pilot symbols are transmitted among data. The

channel estimation algorithm operates on the received signal

along with its stored symbols to generate an estimate of the

transmission channel. The processing of pilot frames generates

a dynamic behavior of the application, since this induces a

variable execution length.

The application is pipelined into 13 different tasks. To

maximize the concurrency between pipelined tasks, a double

buffer is used between each task. Thus, tasks can indepen-

dently execute the next frame from the previous pipelined

stage results. To study the acceleration and the benefits that

could be obtained with a streaming execution, we compare in

Figure 3 the execution of the non-parallelized application on

a standalone PE, with a streaming implementation on several

processors.

As shown in Figures 3-a and 3-b, the parallelism obtained

with a streaming execution can be important. We get an

acceleration of 4.5 and an occupation rate beyond 80 % with

8 PEs. The acceleration is constrained by the pipeline length,

which is limited to 13 tasks. However, the task execution

on a standalone processing element is penalized by more

cache misses, since all the application shares the same caches.

These results depend on the control overhead, which must

be minimized. In our architecture, we use a microkernel

especially developed to optimize the reactivity of the control.

However, when the number of PEs increases (up to 16 PEs),

the task execution and control overhead become predominant.

This is mainly due to the control complexity that increases

with the number of tasks and PEs to manage, and also because

of the limited parallelism level of the application.

The streaming description of the application and the use of

the streaming protocol to access shared data has also a non-

negligible cost. Many accesses to a central device, such as the

MMU, to get the authorization to write or read each page of

a buffer, could have a very negative impact on performances.

Only simulations help the evaluation of the potential benefit. In

Figures 3-c and 3-d, the task execution overhead is represented

and helps to understand the penalty induced by a streaming

execution model. Without parallelization, the task execution

overhead is insignificant and is only due to the task loading

or saving. On the contrary, the task execution overhead must be

taken into account within a streaming execution. It represents

22 % of the total execution time with 8 PEs. It is mainly due

to page availability waits and this increases drastically with

the number of processing elements. Regarding the contentions

into the network, since we use a multibus network all PEs

have their own access to each memory bank, and therefore

only FIFOs on each memory bank can induce an additional

latency. For instance, with 8 PEs the increase latency to access

a memory bank is about 0.43% for data accesses and 0.12% for

instruction accesses. These results are due to a smart allocation

of data and instructions between memory banks by the MMU.

These results show interesting benefits when using a stream-

ing execution. The parallelization is effective with many

processors and turns out to be scalable if the application

pipeline length is sufficient. The protocol used to access shared

data has a negative impact on performances, but this execution

model remains a good trade-off for multiprocessing execution.

Nonetheless, the control overhead must be efficiently managed

and all the optimization done in this study should not mask

its importance.

VII. CONCLUSION

This paper presented an asymmetric MPSoC simulator

named SESAM enhanced with new functionalities to support

the streaming execution of dataflow applications. Asymmetric

MPSoCs are adapted for the execution of dynamic embed-

ded applications and can efficiently support the execution

of a pipelined application on a limited number of comput-

ing resources. With memory management unit modifications

and an extension of the hardware abstraction layer, a new

streaming execution model is now supported into the SESAM

framework. This contributes to considerably enlarge supported

applications and allows new hybrid execution model studies.

The efficiency of this parallelism approach for dataflow

applications were studied through the simulation of a com-

plete MPSoC architecture. A WCDMA encoder and decoder

application was implemented onto this platform. Interesting

results have been obtained, thanks to the SESAM explo-

ration environment. They demonstrated the performance of

this execution model in spite of the induced control and

synchronization overheads. An acceleration of 4.5 was reached

with 8 processing elements.
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