
System Level Analysis and Accurate Prediction of Electromigration
Tushar Gupta, Clément Bertolini, Olivier Héron and Nicolas Ventroux

CEA, LIST, PC94, F-91191 Gif-sur-Yvette, France
email: {first.last}@cea.fr

Thomas Zimmer and François Marc
Université Bordeaux I, IMS, F-33405 Talence, France

email: {first.last}@ims-bordeaux.fr

ABSTRACT

A single chip or a system can have more than billions of
transistors, and billions of via connected through miles of
interconnections. This paper aims at analyzing dynamic variations
and then hard failures due to electromigration at functional level and
to estimate the accuracy of the reliability aware ArchC based
processor simulator. We use this simulator to provide the cumulative
failure rate for a processor simulated at functional level, at 373MHz
and 1.21V. The simulations are assumed to be under consideration of
ideal environment, with no humidity and no process variability.

1. INTRODUCTION

At different levels of abstraction, there are different trade-offs to
calculate power consumption and predict reliability. We get more
accurate data at lower level of abstraction than higher. But the
simulation is faster at higher level of abstraction. Multi-Processor
System-On-Chip (MPSoC) are complex digital circuits but are very
attractive for embedded computing intensive applications. Such
circuits are composed of up to hundreds of processor cores,
memories and interconnect. Their design space exploration (memory
sizes, processor pipeline depth, interconnect bandwidth, task
scheduling, etc.) for performance or power consumption objectives
requires fast and accurate simulators. Performance, power and
temperature modeling and simulations for MPSoCs are still subject
to intensive research works. We have many kinds of failure
mechanisms that may result in intermittent and permanent errors in
integrated circuits (IC). The main ones are electromigration (EM) in
interconnect, hard/soft oxide breakdown, hot carrier injection (HCI),
and bias temperature instability (BTI) in MOS transistors. These
failure mechanisms are still extensively studied at the transistor level,
and manufacturers provide technology dependent parameters for
each failure mechanism [7]. Designers need to verify if a design is
robust and can handle memory sizes, task scheduling and others for
performance and reliability. Relatively to other works related to
reliability simulation at front-end such as [6], the reasons we develop
a reliability aware ArchC based simulator are: 1. Need of speed
during simulation: the processor lifetime reliability was simulated at
cycle accurate level (pipeline step) which was too slow for MPSoC
simulation, 2. Need of a powerful language description for processor
cores at functional level (ArchC) with lifetime reliability evaluation
capabilities to be readily integrated in an MPSoC simulator and 3.
Need to distinguish the effect of different benchmarks on lifetime
reliability of the processor and explore the effect of different task
scheduling techniques in an MPSoC, very early in the design flow.

Starting point of our work to develop this reliability simulator are
(i) PowerArchC [5], an enhanced ArchC [2] based ISS that embeds
block-level power estimation capabilities at functional level, (ii)
RTME, a methodology to get failure models and a reliability
simulator at block level, and (iii) Hotspot [3], a block-level
temperature simulator. The technical contribution of this paper is a
trace-based tool chain (power-temperature-reliability) – that is fully
parameterized – for exploring reliability in a MIPS processor, at
functional level. In this reliability simulator, we can plug any
technology library from manufacturers, packaging library and failure
library (typically failure models). Reliability is expressed as the
Cumulative Failure Rate (CFR) over time for each digital block and

each failure mechanism [1]. This simulator could highlight the main
failure detractors and the weak parts of the design that are prone to
these detractors.

In this paper, we show how to use this tool chain at functional
level for exploring the effects of different benchmarks for different
power values for 3 different floorplans at functional level. Results
will be derived for a MIPS processor in TSMC 40nm. Section 2 will
motivate our methodology. Section 3 will present our methodology
to estimate power consumption and reliability at functional level. We
apply the proposed methodology to the MIPS case study and provide
results in Section 4. Finally, Section 5 concludes the paper.

2. RELATED WORK

There is a strong relationship between power consumption (both
dynamic and static), temperature, environmental conditions
(humidity, and ambient temperature), process variations and
operating conditions (operating supply voltage and frequency)
causing dynamic variations, then timing violations and catastrophic
failures (permanent faults) in an integrated chip. Various authors
explained this relationship and discussed that most system-level (one
block or a complete processor) reliability models are empirical
models which can benefit greatly from calibration and validation.

Reliability simulators show the increase in speed and decrease in
accuracy as the abstraction level goes from device to gate and
functional. BERT, the Berkeley’s reliability simulator, is a well
known academic example at transistor level. Srinivasan et al. [8]
presented RAMP (Reliability Aware Microprocessor) is a
methodology for lifetime reliability analysis for microprocessors at
micro-architecture level and performed dynamic reliability
management (DRM) using this methodology. RAMP assumes a
uniform device density over the chip and an identical vulnerability of
devices to failure mechanisms. Later, other authors such as [6]
introduced a structure-aware model that takes the vulnerability of
basic structures of the micro architecture (e.g., register files, latches
and logic) to different failure mechanisms into account. They have
provided methodologies that use DTM and DPM to improve the
reliability of MPSoCs, but they only assume the failure rate of the
circuit to be dependent on its instantaneous behavior and to be
independent of circuit usage in the past. Recently, system level
simulators [1] presented a solution for lifetime reliability evaluation
of processor-based SoCs using state of the art power and temperature
simulators. They take aging effects into consideration as compared to
[6]. In a recent paper [9], authors also provided many details about
mathematics of calculating aging rate – a new reliability metric – but
only numerical examples for electromigration. The integration of
simulators in a real MPSoC design flow with different technology
libraries is not yet addressed. We provide a methodology to calculate
the cumulative failure rate for a failure mechanism of a processor at
functional level. The results are less accurate than transistor or gate
level reliability simulators, but still close to the real world. Actually,
the simulator enables to change technology libraries, packaging
libraries, and failure libraries. Designer at very early stage of design
can perform small or big changes and analyze their effects on
reliability of the processor. The methodology we propose is ready to
be applied to MPSoCs.

3. METHODOLOGY

Our reliability simulation methodology is illustrated in Figure 1
and is explained below. To estimate the reliability of a processor at
functional level, we need power and temperature values at functional
level, as well. For temperature, we need power consumption values,
packaging characteristics and the processor floorplan. Power at
functional level is obtained through Instruction Level Power
Characterization (ILPC) [5] performed with a power simulation tool
applied to a gate level description of the processor. Since we only
simulate the behavior of instructions at functional level, a first step is
to model the power contribution of each instruction. As shown, in the
left part of Figure 1, the “RTL design” of the processor corresponds
to the “functional descriptions” (micro-architecture and instruction
set architecture), made in ArchC language in Figure 1 [2]. From that,
a synthesis tool like “Design Compiler” (Synopsys) generates a “gate
level design”, based on a chosen “technology library” (e.g. TSMC).
To obtain power information at functional level, “ILPC” at gate level
is performed with simulation tools like “ModelSim”
(MentorGraphics) and “PrimeTime” (Synopsys). The latter can
provide an accurate power consumption of each gate and each digital
block, at each circuit clock cycle and for different voltage and
frequency conditions (“V-F”). We design a parser that outputs the
average power consumption of each instruction from processor
power and program traces provided by the simulation tools. We took
an assumption to achieve the “Power model” that is we do not
consider all possible combinations of instructions and operands.

Figure 1. Reliability simulator Methodology

“Power model” is next used to back-annotate the ISS generated
by ArchC, with power values for each simulated instruction. The
behavior description of the instruction now contains a variable that
points to the corresponding instruction in the power model. The ISS
is now able to output both instruction and “power traces” and total
consumed energy and power of the executed benchmark. The
modified ISS version with power capabilities is called PowerArchC
[5]. A “Power model” refers to chosen operating condition (Voltage,
Frequency) and characterization campaign (benchmarks). In
Figure 1, the campaigns are made with MiBench benchmarks. As
shown in the right part of Figure 1, temperature traces are obtained
using the tool named HotSpot [3]. Using a “floorplan”, a “Packaging
library” and “power traces” of the whole processor, Hotspot can
derive steady and transient temperature values of each block of the
“floorplan”. More details are given in [1]. We use RTME (Real-Time
MTTF Evaluation) which is a simulation tool we developed for
predicting Cumulative Failure Rate (CFR) – reliability metric – of
different blocks of the “floorplan” of an integrated circuit. It is
capable to compare aging behavior for different benchmarks and
architecture choices, not bound to any specific technology and power
and temperature simulators. For now, it reads “V-F configuration”
and “power and temperature traces” of the floorplan blocks for
different failure mechanisms. CFR represents the cumulative failure

rate over the time of a failure mechanism and is computed as
follows:

∑

=

=
n

a
axx tbabnCFR

1

*),(),(λ (1)

where 'a' is the time step of duration ‘ta'’, ‘ λ’ is the current block
failure rate at time ‘ti’, 'n' is the total number of steps, 'b' is the block
reference and 'x' is the failure mechanism reference. In this paper, our
failure library considers one failure mechanism: EM.

We now explain how the block failure rate is modeled from the
knowledge of physics and failure models of EM at device level. EM
is considered to be the result of momentum transfer from the
electrons, which move in the applied electric field, to the ions which
make up the lattice of the interconnect material. When electrons are
conducted through a metal, they interact with imperfections in the
lattice and scatter. Scattering occurs whenever an atom is out of place
for any reason. Thermal energy produces scattering by causing atoms
to vibrate. This is the source of resistance of metals. The higher the
temperature, the more out of place the atom is, the greater the
scattering and the greater the resistivity. Joule heating is proportional
to the square of current density, the current crowding effect leads to a
local temperature rise around the void that in turn further accelerates
the void growth. The whole process continues till the void is large
enough to break the line. The failure rate for EM of a single wire or
via or contact is given using the well-known Black’s law:

 Tk

Ea

EM

EM

e
A

j *

0

*
² −

=λ (2)

Where ‘j’ is the instantaneous current density that flows in the item,
‘A 0’ is the combination of technology-dependent constants and the
second part is from Arrhenius equation, where, ‘Ea’ is activation
energy, ‘k’ is Boltzmann constant and ‘T’ is the junction temperature.
The instantaneous current density ‘j’ that flows through a via/contact
during a clock cycle can be expressed as follows:

S

fVC

S

i
j ddox **== (3)

Where ‘i’ is the instantaneous current, ‘S’ is the wire/via/contact
cross-section area, ‘Vdd’ is the operating voltage and ‘f’ is the
operating frequency. From equation (2), we derive the failure rate of
a digital block composed of ‘N’ items by applying the following
assumptions: (i) the failure rate of a block is a constant value during
a cycle ‘ti’. Hence, the Mean Time to Failure (MTTF) is the
reciprocal of the failure rate; (ii) the equivalent failure rate of ‘N’
components is based on a Series model in which the first device
failure always causes the block failure; (iii) EM is predominant in
contacts/vias located in power rails and CMOS gate outputs; we
neglect the effects of EM in inter-gate wiring (iv) same transistor
geometries and doping with same via/contact cross-section areas and
hence same capacitances; (v) block area is proportional to the number
of transistors and hence via/contact (N); (vi) we assume that all
CMOS gates have an identical fanout; (vii) and the number of
switching transistors is proportional to the switching probability.
Therefore, the instantaneous current density (Black’s law) of a block
is assumed to be replaced by the mean current density bringing into
play the switching probability, the mean dynamic power and the
number of components. From that, the failure rate of block ‘b’ for
EM at time ‘ta’ can be expressed as follows:

 []),(*

0

2

*
),(*),(

*),(baTk

Ea

EM

EM

e
A

bajba
Nba

−
= αλ (4)

Where ‘α’ is the input switching probability at time ‘ta’ and ‘N’ is the
total number of via/contact of the block. Here, an identical current

density flows through all the via/contact at each cycle and the value
is proportional to ‘α’. Similarly, the instantaneous dynamic power
‘Pdyn’ of a digital block can be expressed as follows:

 fVCP ddblockdyn *** 2 α= (5)

Where ‘Cblock’ is the equivalent gate capacitance of the block and
Cblock= N*Cox. Hence, from equations (3) and (5) we can derive the
following relation,

α*** NSV

P
j

dd

dyn= (6)

And from equations (1) and (5), we can derive the failure rate of the
block as an expression of the dynamic power of the block and the
input switching probability,

 e
B

baP
ba baTk

Ea
dyn

EM

EM

),(*

0

2

*
),(

),(
−

=λ (7)

Where NSVAB dd *** 22
00 = . Therefore, the CFR for EM of a

digital block ‘b’ at time ‘n’ can be derived from (6) and (1) as
follows:

a

n

a

baTk

Ea
dyn

EM te
B

baP
bnCFR

EM

**
),(

),(
1

),(*

0

2

∑
=

−
= (8)

EM results depend on power consumption and temperature
variations. Similarly to power and temperature, CFR is computed at
each instruction execution i.e. each time step of PowerArchC
simulator. Note here that we do not yet consider the static power
contribution. Parameter ‘n’ of CFR formula is so equal to the number
of instructions in the executed benchmark. Parameter ‘ta’ is a
constant value (let say ‘T’) related to the frequency at which power
and temperature are recorded. The ‘ath’ line in a power or
temperature trace corresponds to the value measured at time step‘(a -
 1)*T’. Power and temperature are assumed to remain constant
during time ‘T’. At each time step, RTME produces a CFR value for
each failure mechanism and for each block of the chip floorplan.

4. RESULTS

We implement the methodology discussed in Section 3 on a
MIPS 32-bit processor. We use ArchC v2.0 to generate the MIPS ISS
that supports the full R3000 ISA. We synthesize an open source RTL
description of MIPS (HMC-MIPS) with TSMC 40nm standard cell
libraries for typical case scenario. ILPC and reliability simulations
are performed with the following operating conditions: 373MHz and
1.21V @25°C. We assume an ideal environment with no humidity
and no process variability and we consider results for the whole
processor without system memories. However, we design a detailed
floorplan of MIPS, as described in [1], composed of 7 blocks denoted
as follows: fetch, decode, execute, writeback, memory, control and
clock. ILPC is performed with a program built randomly: instruction
opcode selection and execution order are random (script in Perl). The
number of instructions and operands in the bench vary every time.
The program executes approximately 300,000 instructions. Due to
instruction cache and time limitations, the program is split into 20
sub-programs, each composed of 16000 instructions. We provide one
final power model with more accuracy compared to the model used
in [5].

Table 1 shows the power simulator performances and accuracy.
Third column compares the execution time of a benchmark at RTL
(PrimeTime) and at functional level (PowerArchC). The last column
shows the percent error, where Dynamic power from RTL provides

the theoretical value and Dynamic power from PowerArchC is
calculated using power model obtained with the help of the random
program.

Table 1. Power simulator performance and accuracy

Benchmark # instr.
Simulation time (min) %error

 PowerArchC PrimeTime

Qsort 4741 <1 ~60 6.24

Motion 30558 <1 ~240 1.57

Figure 2 shows the dynamic power values for the different classes
of MIPS instructions in our power model. Figure 3 shows the
dynamic power of a collection of MiBench benchmarks [4] which are
typically used in embedded systems. With the help of a benchmark
profiling (Figure 4), Rijndael has a higher percentage of ‘boolean’
instructions and less of ‘arithmetic’ instructions, that explains the
high dynamic power of ‘Rijndael bench. In contrary, GSM has high
percentage of ‘arithmetic’ instructions and other ‘miscellaneous’
instructions (e.g., nop, mfhi), and less of ‘boolean’, and hence less
dynamic power compared to others. To conclude, with these results
we can say that, higher the percentage of arithmetic and
miscellaneous instructions, lower the dynamic power consumption.

Figure 2. Dynamic power for each instruction set in average

Figure 3. Total dynamic power for each benchmark

Figures 5, 6 and 7 are the graphs depicting effect of Power on
Temperature and hence on failure rate (λ) and CFREM. The graphs
are shown with respect to time. Each sample on x-axis corresponds
to approximately 27 µsec. The variation in temperature in each
benchmark is due to difference in type of instructions executed in
time. Each benchmark is executed in a loop for approximately
122ms. When we create loops in benchmarks, we observe that the
temperature values from HotSpot follow the same pattern for each
loop. The difference between minimum and maximum of

temperature is found while changing some internal parameters in
HotSpot, but it follows the same pattern in all cases. One can remark
that the position of steady temperature values (average) of each
benchmark is similar to the one of total power (Figure 3).

Figure 4. Instruction distribution in MiBench benchmark suite

Figure 5. Temperature profiling for all benchmarks

Figure 6. Normalized CFREM for all benchmarks, from 0 to 122ms

We normalize all of benchmark CFR values with the maximum
CFR value, this is because of the lack of knowledge about reliability
related parameters from the manufacturer, and hence the constant
values are replaced with typical constants found in recent studies [7].
Failure rate in Figure 6 shows the variations due to power and
temperature both, but largely due to exponential dependency on
temperature. CFREM@122ms tends to increase in linear manner, with
curve in the beginning. The user of such reliability simulator can
analyze CFR due to different benchmarks and can decide a threshold
according to the purpose of the specific processor. The equal time of
simulations are shown for clarity, since Patricia is very long in
comparison to other benches, but this does not change the behavior
of CFR and will continue in the same manner, if the user simulates a
loop of same application. Then, the results of Figure 6 can be easily
extended to one year or other times. Whatever the time is, ‘Rijndael’
has the most effect on processor EM compared to ‘GSM’. Table 2

shows the variation in CFR for StringSearch because of activation
energy ‘Ea’. The accuracy by which this parameter is determined has
a great impact on the reliability level. A 50% variation induces a
variation of CFR with a factor of 105 @122ms.

Figure 7. Normalized failure rate variations for all benchmarks

Table 2. Variations in CFREM with respect to activation energy

Ea 0.6 0.7 0.8 0.9

Normalized
CFREM@8ms

~0,8 ~2E-02 ~6E-04 ~1E-05

5. CONCLUSION

In this paper, we have continued the analyses with RAAPS [1],
providing some details regarding the failure model used for
electromigration at functional level. Our simulator can provide
analysis with the execution of same applications, using e.g. different
floorplans and scheduling policies, and find the most reliable
combination. In this paper, we have also shown the effect of dynamic
power on reliability and explored it with time. We showed that,
power consumption and the type and number of occurrences of
executed instructions have a big effect on MIPS processor that could
be the reason of various failure probabilities.

6. REFERENCES

[1] T. Gupta et al, "RAAPS: Reliability Aware ArchC based Processor
Simulator," IEEE IRW 2010, pp.153-156.

[2] S. Rigo et al., “Archc: a systemc based architecture description
language”. IEEE SBAC-PAD 2004, pages 66-73.

[3] K. Skadron et al., “Temperature-aware microarchitecture: Modeling
and implementation”, ACM Trans. Archit. Code Optim., vol. 1, issue
1, pp. 94-125, 2004.

[4] M. R. Guthaus et al., “MiBench: A free, commercially representative
embedded benchmark suite”, IEEE WWC-4, pp. 3-14, 2001.

[5] T. Gupta et al., “High Level Power and Energy Exploration using
ArchC”, To appear in IEEE SBAC-PAD, 2010.

[6] A. K. Coskun et al., “A simulation methodology for reliability
analysis in multi-core SoCs”, in ACM GLS-VLSI, 2006.

[7] JEDEC Publication, “Failure Mechanisms and Models for
Semiconductor devices”, JEP122E, March, 2009.

[8] J. Srinivasan et al. “Lifetime Reliability: Toward an Architectural
Solution”, IEEE Micro 2005, May-Jun, pp. 70-80.

[9] L. Huang and Q. Xu, "AgeSim: A Simulation Framework for
Evaluating the Lifetime Reliability of Processor-Based SoCs",
IEEE/ACM DATE’10, pp. 51-56, March 2010.

