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ABSTRACT 

A single chip or a system can have more than billions of 
transistors, and billions of via connected through miles of 
interconnections. This paper aims at analyzing dynamic variations 
and then hard failures due to electromigration at functional level and 
to estimate the accuracy of the reliability aware ArchC based 
processor simulator. We use this simulator to provide the cumulative 
failure rate for a processor simulated at functional level, at 373MHz 
and 1.21V. The simulations are assumed to be under consideration of 
ideal environment, with no humidity and no process variability.   

1. INTRODUCTION 

At different levels of abstraction, there are different trade-offs to 
calculate power consumption and predict reliability. We get more 
accurate data at lower level of abstraction than higher. But the 
simulation is faster at higher level of abstraction.  Multi-Processor 
System-On-Chip (MPSoC) are complex digital circuits but are very 
attractive for embedded computing intensive applications. Such 
circuits are composed of up to hundreds of processor cores, 
memories and interconnect. Their design space exploration (memory 
sizes, processor pipeline depth, interconnect bandwidth, task 
scheduling, etc.) for performance or power consumption objectives 
requires fast and accurate simulators. Performance, power and 
temperature modeling and simulations for MPSoCs are still subject 
to intensive research works. We have many kinds of failure 
mechanisms that may result in intermittent and permanent errors in 
integrated circuits (IC). The main ones are electromigration (EM) in 
interconnect, hard/soft oxide breakdown, hot carrier injection (HCI), 
and bias temperature instability (BTI) in MOS transistors. These 
failure mechanisms are still extensively studied at the transistor level, 
and manufacturers provide technology dependent parameters for 
each failure mechanism [7]. Designers need to verify if a design is 
robust and can handle memory sizes, task scheduling and others for 
performance and reliability. Relatively to other works related to 
reliability simulation at front-end such as [6], the reasons we develop 
a reliability aware ArchC based simulator are: 1. Need of speed 
during simulation: the processor lifetime reliability was simulated at 
cycle accurate level (pipeline step) which was too slow for MPSoC 
simulation, 2. Need of a powerful language description for processor 
cores at functional level (ArchC) with lifetime reliability evaluation 
capabilities to be readily integrated in an MPSoC simulator and 3. 
Need to distinguish the effect of different benchmarks on lifetime 
reliability of the processor and explore the effect of different task 
scheduling techniques in an MPSoC, very early in the design flow.  

Starting point of our work to develop this reliability simulator are 
(i) PowerArchC [5], an enhanced ArchC [2] based ISS that embeds 
block-level power estimation capabilities at functional level, (ii) 
RTME, a methodology to get failure models and a reliability 
simulator at block level, and (iii) Hotspot [3], a block-level 
temperature simulator. The technical contribution of this paper is a 
trace-based tool chain (power-temperature-reliability) – that is fully 
parameterized – for exploring reliability in a MIPS processor, at 
functional level. In this reliability simulator, we can plug any 
technology library from manufacturers, packaging library and failure 
library (typically failure models). Reliability is expressed as the 
Cumulative Failure Rate (CFR) over time for each digital block and 

each failure mechanism [1]. This simulator could highlight the main 
failure detractors and the weak parts of the design that are prone to 
these detractors. 

In this paper, we show how to use this tool chain at functional 
level for exploring the effects of different benchmarks for different 
power values for 3 different floorplans at functional level. Results 
will be derived for a MIPS processor in TSMC 40nm. Section 2 will 
motivate our methodology. Section 3 will present our methodology 
to estimate power consumption and reliability at functional level. We 
apply the proposed methodology to the MIPS case study and provide 
results in Section 4. Finally, Section 5 concludes the paper. 

2. RELATED WORK 

There is a strong relationship between power consumption (both 
dynamic and static), temperature, environmental conditions 
(humidity, and ambient temperature), process variations and 
operating conditions (operating supply voltage and frequency) 
causing dynamic variations, then timing violations and catastrophic 
failures (permanent faults) in an integrated chip. Various authors 
explained this relationship and discussed that most system-level (one 
block or a complete processor) reliability models are empirical 
models which can benefit greatly from calibration and validation. 

Reliability simulators show the increase in speed and decrease in 
accuracy as the abstraction level goes from device to gate and 
functional. BERT, the Berkeley’s reliability simulator, is a well 
known academic example at transistor level. Srinivasan et al. [8] 
presented RAMP (Reliability Aware Microprocessor) is a 
methodology for lifetime reliability analysis for microprocessors at 
micro-architecture level and performed dynamic reliability 
management (DRM) using this methodology. RAMP assumes a 
uniform device density over the chip and an identical vulnerability of 
devices to failure mechanisms. Later, other authors such as [6] 
introduced a structure-aware model that takes the vulnerability of 
basic structures of the micro architecture (e.g., register files, latches 
and logic) to different failure mechanisms into account. They have 
provided methodologies that use DTM and DPM to improve the 
reliability of MPSoCs, but they only assume the failure rate of the 
circuit to be dependent on its instantaneous behavior and to be 
independent of circuit usage in the past. Recently, system level 
simulators [1] presented a solution for lifetime reliability evaluation 
of processor-based SoCs using state of the art power and temperature 
simulators. They take aging effects into consideration as compared to 
[6]. In a recent paper [9], authors also provided many details about 
mathematics of calculating aging rate – a new reliability metric – but 
only numerical examples for electromigration. The integration of 
simulators in a real MPSoC design flow with different technology 
libraries is not yet addressed. We provide a methodology to calculate 
the cumulative failure rate for a failure mechanism of a processor at 
functional level. The results are less accurate than transistor or gate 
level reliability simulators, but still close to the real world. Actually, 
the simulator enables to change technology libraries, packaging 
libraries, and failure libraries. Designer at very early stage of design 
can perform small or big changes and analyze their effects on 
reliability of the processor. The methodology we propose is ready to 
be applied to MPSoCs.  



3. METHODOLOGY 

Our reliability simulation methodology is illustrated in Figure 1 
and is explained below. To estimate the reliability of a processor at 
functional level, we need power and temperature values at functional 
level, as well. For temperature, we need power consumption values, 
packaging characteristics and the processor floorplan. Power at 
functional level is obtained through Instruction Level Power 
Characterization (ILPC) [5] performed with a power simulation tool 
applied to a gate level description of the processor. Since we only 
simulate the behavior of instructions at functional level, a first step is 
to model the power contribution of each instruction. As shown, in the 
left part of Figure 1, the “RTL design” of the processor corresponds 
to the “functional descriptions” (micro-architecture and instruction 
set architecture), made in ArchC language in Figure 1 [2]. From that, 
a synthesis tool like “Design Compiler” (Synopsys) generates a “gate 
level design”, based on a chosen “technology library” (e.g. TSMC). 
To obtain power information at functional level, “ILPC” at gate level 
is performed with simulation tools like “ModelSim” 
(MentorGraphics) and “PrimeTime” (Synopsys). The latter can 
provide an accurate power consumption of each gate and each digital 
block, at each circuit clock cycle and for different voltage and 
frequency conditions (“V-F”). We design a parser that outputs the 
average power consumption of each instruction from processor 
power and program traces provided by the simulation tools. We took 
an assumption to achieve the “Power model” that is we do not 
consider all possible combinations of instructions and operands.  

 

Figure 1. Reliability simulator Methodology 

“Power model” is next used to back-annotate the ISS generated 
by ArchC, with power values for each simulated instruction. The 
behavior description of the instruction now contains a variable that 
points to the corresponding instruction in the power model. The ISS 
is now able to output both instruction and “power traces” and total 
consumed energy and power of the executed benchmark. The 
modified ISS version with power capabilities is called PowerArchC 
[5]. A “Power model” refers to chosen operating condition (Voltage, 
Frequency) and characterization campaign (benchmarks). In 
Figure 1, the campaigns are made with MiBench benchmarks. As 
shown in the right part of Figure 1, temperature traces are obtained 
using the tool named HotSpot [3]. Using a “floorplan”, a “Packaging 
library” and “power traces” of the whole processor, Hotspot can 
derive steady and transient temperature values of each block of the 
“floorplan”. More details are given in [1]. We use RTME (Real-Time 
MTTF Evaluation) which is a simulation tool we developed for 
predicting Cumulative Failure Rate (CFR) – reliability metric – of 
different blocks of the “floorplan” of an integrated circuit. It is 
capable to compare aging behavior for different benchmarks and 
architecture choices, not bound to any specific technology and power 
and temperature simulators. For now, it reads “V-F configuration” 
and “power and temperature traces” of the floorplan blocks for 
different failure mechanisms. CFR represents the cumulative failure 

rate over the time of a failure mechanism and is computed as 
follows:  
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where 'a' is the time step of duration ‘ta'’, ‘ λ’ is the current block 
failure rate at time ‘ti’, 'n' is the total number of steps, 'b' is the block 
reference and 'x' is the failure mechanism reference. In this paper, our 
failure library considers one failure mechanism: EM.  

We now explain how the block failure rate is modeled from the 
knowledge of physics and failure models of EM at device level. EM 
is considered to be the result of momentum transfer from the 
electrons, which move in the applied electric field, to the ions which 
make up the lattice of the interconnect material. When electrons are 
conducted through a metal, they interact with imperfections in the 
lattice and scatter. Scattering occurs whenever an atom is out of place 
for any reason. Thermal energy produces scattering by causing atoms 
to vibrate. This is the source of resistance of metals. The higher the 
temperature, the more out of place the atom is, the greater the 
scattering and the greater the resistivity. Joule heating is proportional 
to the square of current density, the current crowding effect leads to a 
local temperature rise around the void that in turn further accelerates 
the void growth. The whole process continues till the void is large 
enough to break the line. The failure rate for EM of a single wire or 
via or contact is given using the well-known Black’s law:  
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Where ‘j’ is the instantaneous current density that flows in the item, 
‘A 0’ is the combination of technology-dependent constants and the 
second part is from Arrhenius equation, where, ‘Ea’ is activation 
energy, ‘k’ is Boltzmann constant and ‘T’ is the junction temperature. 
The instantaneous current density ‘j’ that flows through a via/contact 
during a clock cycle can be expressed as follows: 
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Where ‘i’ is the instantaneous current, ‘S’ is the wire/via/contact 
cross-section area, ‘Vdd’ is the operating voltage and ‘f’ is the 
operating frequency. From equation (2), we derive the failure rate of 
a digital block composed of ‘N’ items by applying the following 
assumptions: (i) the failure rate of a block is a constant value during 
a cycle ‘ti’. Hence, the Mean Time to Failure (MTTF) is the 
reciprocal of the failure rate; (ii)  the equivalent failure rate of ‘N’ 
components is based on a Series model in which the first device 
failure always causes the block failure; (iii)  EM is predominant in 
contacts/vias located in power rails and CMOS gate outputs; we 
neglect the effects of EM in inter-gate wiring (iv) same transistor 
geometries and doping with same via/contact cross-section areas and 
hence same capacitances; (v) block area is proportional to the number 
of transistors and hence via/contact (N); (vi) we assume that all 
CMOS gates have an identical fanout; (vii) and the number of 
switching transistors is proportional to the switching probability. 
Therefore, the instantaneous current density (Black’s law) of a block 
is assumed to be replaced by the mean current density bringing into 
play the switching probability, the mean dynamic power and the 
number of components. From that, the failure rate of block ‘b’ for 
EM at time ‘ta’ can be expressed as follows: 
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Where ‘α’ is the input switching probability at time ‘ta’ and ‘N’ is the 
total number of via/contact of the block. Here, an identical current 



density flows through all the via/contact at each cycle and the value 
is proportional to ‘α’. Similarly, the instantaneous dynamic power 
‘Pdyn’ of a digital block can be expressed as follows: 

 fVCP ddblockdyn *** 2 α=  (5) 

Where ‘Cblock’  is the equivalent gate capacitance of the block and 
Cblock= N*Cox. Hence, from equations (3) and (5) we can derive the 
following relation,  
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And from equations (1) and (5), we can derive the failure rate of the 
block as an expression of the dynamic power of the block and the 
input switching probability, 
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Where NSVAB dd *** 22
00 = . Therefore, the CFR for EM of a 

digital block ‘b’ at time ‘n’ can be derived from (6) and (1) as 
follows: 
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EM results depend on power consumption and temperature 
variations. Similarly to power and temperature, CFR is computed at 
each instruction execution i.e. each time step of PowerArchC 
simulator. Note here that we do not yet consider the static power 
contribution. Parameter ‘n’ of CFR formula is so equal to the number 
of instructions in the executed benchmark. Parameter ‘ta’ is a 
constant value (let say ‘T’) related to the frequency at which power 
and temperature are recorded. The ‘ath’ line in a power or 
temperature trace corresponds to the value measured at time step‘(a -
 1)*T’. Power and temperature are assumed to remain constant 
during time ‘T’. At each time step, RTME produces a CFR value for 
each failure mechanism and for each block of the chip floorplan. 

4. RESULTS 

We implement the methodology discussed in Section 3 on a 
MIPS 32-bit processor. We use ArchC v2.0 to generate the MIPS ISS 
that supports the full R3000 ISA. We synthesize an open source RTL 
description of MIPS (HMC-MIPS) with TSMC 40nm standard cell 
libraries for typical case scenario. ILPC and reliability simulations 
are performed with the following operating conditions: 373MHz and 
1.21V @25°C. We assume an ideal environment with no humidity 
and no process variability and we consider results for the whole 
processor without system memories. However, we design a detailed 
floorplan of MIPS, as described in [1], composed of 7 blocks denoted 
as follows: fetch, decode, execute, writeback, memory, control and 
clock. ILPC is performed with a program built randomly: instruction 
opcode selection and execution order are random (script in Perl). The 
number of instructions and operands in the bench vary every time. 
The program executes approximately 300,000 instructions. Due to 
instruction cache and time limitations, the program is split into 20 
sub-programs, each composed of 16000 instructions. We provide one 
final power model with more accuracy compared to the model used 
in [5].  

Table 1 shows the power simulator performances and accuracy. 
Third column compares the execution time of a benchmark at RTL 
(PrimeTime) and at functional level (PowerArchC). The last column 
shows the percent error, where Dynamic power from RTL provides 

the theoretical value and Dynamic power from PowerArchC is 
calculated using power model obtained with the help of the random 
program.  

Table 1. Power simulator performance and accuracy 

Benchmark # instr. 
Simulation time (min) %error 

 PowerArchC PrimeTime 

Qsort 4741 <1  ~60 6.24 

Motion 30558 <1  ~240 1.57 

Figure 2 shows the dynamic power values for the different classes 
of MIPS instructions in our power model. Figure 3 shows the 
dynamic power of a collection of MiBench benchmarks [4] which are 
typically used in embedded systems. With the help of a benchmark 
profiling (Figure 4), Rijndael has a higher percentage of ‘boolean’ 
instructions and less of ‘arithmetic’ instructions, that explains the 
high dynamic power of ‘Rijndael bench. In contrary, GSM has high 
percentage of ‘arithmetic’ instructions and other ‘miscellaneous’ 
instructions (e.g., nop, mfhi), and less of ‘boolean’, and hence less 
dynamic power compared to others. To conclude, with these results 
we can say that, higher the percentage of arithmetic and 
miscellaneous instructions, lower the dynamic power consumption. 

Figure 2. Dynamic power for each instruction set in average 

  
Figure 3. Total dynamic power for each benchmark  

Figures 5, 6 and 7 are the graphs depicting effect of Power on 
Temperature and hence on failure rate (λ) and CFREM. The graphs 
are shown with respect to time. Each sample on x-axis corresponds 
to approximately 27 µsec. The variation in temperature in each 
benchmark is due to difference in type of instructions executed in 
time. Each benchmark is executed in a loop for approximately 
122ms. When we create loops in benchmarks, we observe that the 
temperature values from HotSpot follow the same pattern for each 
loop. The difference between minimum and maximum of 



temperature is found while changing some internal parameters in 
HotSpot, but it follows the same pattern in all cases. One can remark 
that the position of steady temperature values (average) of each 
benchmark is similar to the one of total power (Figure 3). 

Figure 4. Instruction distribution in MiBench benchmark suite 

Figure 5. Temperature profiling for all benchmarks 

 
Figure 6. Normalized CFREM for all benchmarks, from 0 to 122ms 

We normalize all of benchmark CFR values with the maximum 
CFR value, this is because of the lack of knowledge about reliability 
related parameters from the manufacturer, and hence the constant 
values are replaced with typical constants found in recent studies [7]. 
Failure rate in Figure 6 shows the variations due to power and 
temperature both, but largely due to exponential dependency on 
temperature. CFREM@122ms tends to increase in linear manner, with 
curve in the beginning. The user of such reliability simulator can 
analyze CFR due to different benchmarks and can decide a threshold 
according to the purpose of the specific processor. The equal time of 
simulations are shown for clarity, since Patricia is very long in 
comparison to other benches, but this does not change the behavior 
of CFR and will continue in the same manner, if the user simulates a 
loop of same application. Then, the results of Figure 6 can be easily 
extended to one year or other times. Whatever the time is, ‘Rijndael’ 
has the most effect on processor EM compared to ‘GSM’. Table 2 

shows the variation in CFR for StringSearch because of activation 
energy ‘Ea’. The accuracy by which this parameter is determined has 
a great impact on the reliability level. A 50% variation induces a 
variation of CFR with a factor of 105 @122ms. 

Figure 7. Normalized failure rate variations for all benchmarks 

Table 2. Variations in CFREM with respect to activation energy 

Ea 0.6 0.7 0.8 0.9 

Normalized 
CFREM@8ms 

~0,8 ~2E-02 ~6E-04 ~1E-05 

5. CONCLUSION 

In this paper, we have continued the analyses with RAAPS [1], 
providing some details regarding the failure model used for 
electromigration at functional level. Our simulator can provide 
analysis with the execution of same applications, using e.g. different 
floorplans and scheduling policies, and find the most reliable 
combination. In this paper, we have also shown the effect of dynamic 
power on reliability and explored it with time. We showed that, 
power consumption and the type and number of occurrences of 
executed instructions have a big effect on MIPS processor that could 
be the reason of various failure probabilities.  
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