
Highly-Parallel Special-Purpose Multicore
Architecture for SystemC/TLM Simulations

N. Ventroux∗†, J. Peeters∗, T. Sassolas∗
∗CEA, LIST,

Embedded Computing Laboratory
91191 Gif-sur-Yvette CEDEX, France

Email: nicolas.ventroux@cea.fr

James C. Hoe†
†Computer Architecture Laboratory (CALCM)

Carnegie Mellon University
Pittsburgh, PA 15213-3890, USA

Email: jhoe@ece.cmu.edu

Abstract—The complexity of SystemC virtual prototyping is
continuously increasing. Accelerating RTL/TLM SystemC simula-
tions is essential to control future SoC development cost and time-
to-market. In this paper, we present RAVES, a highly-parallel
special-purpose multicore architecture that achieves simulation
performance more efficiently by parallel execution of light-weight
user-level threads on many small cores. We present a design study
based on the virtual prototype of RAVES processors running a co-
designed custom SystemC kernel. Our evaluation suggests that a
64-core RAVES processor can deliver up to 4.47x more simulation
performance than a high-end x86 processor.

I. INTRODUCTION

Electronic System Level (ESL) design has become essential
in the design methodology of large digital systems. Based on
the SystemC language [1], it provides an effective framework
for HW/SW codesign, system-level and performance model-
ing, architecture exploration, high-level verification, as well as
early development of system software. However, the increasing
complexity of digital systems is reducing the benefit of using
high-level simulations in the design flow. Slower performance
can increase development costs and drastically impact the
time to market. Thus, accelerating SystemC simulations is
becoming essential to foster competitiveness.

Existing Approaches. A SystemC design is a cooperative
and sequential multi-threaded program. It is highly irregular
and control-oriented. Several works in the literature have
attempted to optimize and parallelize SystemC simulations. For
instance, some optimizations have been performed by remov-
ing unnecessary context switches and by statically scheduling
SystemC processes for RTL modeling [2], [3] or TLM [4]. An
acceleration can only be obtained mostly for RTL combina-
tional logic simulations that can generate multiple unnecessary
waking-ups.

Some works propose to divide the model into several
subsystems which are distributed on multiple cores. These
subsystems cooperate to carry out the complete simulation
[5], [6]. However, it introduces a significant overhead mainly
due to synchronizations. Performance depends on the natural
concurrency and granularity of what is simulated.

Besides in SystemC, there is a natural thread-level par-
allelism in the same delta cycle during the evaluation of
processes. Several prior works in the literature propose to
exploit this parallelism. For instance in [7], [8], multiple CPUs
are used to evaluate in parallel the processes. Unfortunately, the

synchronizations still impact the performance mainly because
a synchronization is necessary at each delta cycle. This is also
the reason why some recent works relax synchronizations [9],
[10]. However, optimistic techniques in large simulations is
costly in terms of memory and performance, especially with
the non-predictable behavior of MPSoCs.

To reduce the synchronization overhead, some works ex-
ploit the parallelism of a single multicore chip. In [11], pro-
cesses are dispatched on the different secondary processors of
the CELL architecture. Their proposal has several constraints;
for instance, the processes are sensitive to a single signal,
which is very rare in hardware modeling. Finally, the most
recent works use GP-GPU platforms [12]–[15]. Nonetheless,
the maximum number of concurrent and different threads that
can be executed in parallel is limited by the number of threads
groups in a GPU. In addition, most of the acceleration has
been obtained by considering high data-parallel benchmarks or
independent simulation instances, by modifying the SystemC
kernel to reduce synchronizations, or by executing identical
parallel threads.

Special Purpose Architecture. In this paper, we propose to
study the performance that can be obtained with a special-
purpose multicore processor, based on many power-efficient
and smaller RISC cores. The underlying parallelization ap-
proach can also be generalized to enable a performance-
oriented system based on high-performance cores.

Thus, we present a special-purpose HW/SW co-designed
approach to exploit parallelism in any RTL and TLM SystemC
simulations. A specific heterogeneous multicore architecture
and a very lightweight system software has been designed
to efficiently manage SystemC processes. Our RApid Vir-
tual prototyping Emulation System (RAVES) is a hardware
platform that can support a dynamic and parallel execution
of SystemC processes. This platform comes with a hardware
SystemC kernel accelerator to reduce control and synchro-
nization overheads, as well as to increase the scalability of
our approach. A lightweight and optimized parallel SystemC
kernel manages the SystemC processes. The SystemC kernel
accelerator allows the processes to be efficiently dispatched to
manycores for parallel execution. A hardware virtual prototype
of this platform has been developed, and is used in this study
for the evaluations.

Contributions. The contributions of this paper are: (1) a
SystemC kernel for parallel simulation, (2) a hardware Sys-



temC kernel accelerator to reduce control and synchronization
overheads, and (3) a multicore architecture that integrates the
parallel SystemC kernel and the kernel accelerator to execute
SystemC/TLM simulations.

The paper is organized as follows. The second section mo-
tivates our approach. Section 3 presents the RAVES SystemC
kernel. Section 4 introduces the RAVES multicore architecture.
Section 5 depicts the execution model to explain how SystemC
simulations are executed on RAVES. Section 6 discusses the
validation of our solution and compares our results to existing
work. Finally, Section 7 concludes the paper and discusses
possible future work.

II. MOTIVATION

To implement parallel and concurrent mechanisms, the
SystemC library can be compiled either with kernel threads
(PosixThread) or with user-level threads (QuickThread).

With kernel threads, the operating system (OS) has a
descriptor for each thread belonging to a process. It can
automatically schedule them on several cores according to their
availability. However, the SystemC kernel is already managing
the execution of threads and uses a cooperative multithreading
strategy. This prevents the OS from efficiently scheduling
threads, generating unnecessary migrations of threads between
cores, as shown Figure 1. By forcing the execution on one core,
the total execution time is actually reduced by 2.88x.

When forced onto a single-core in sequential mode, kernel
threads still induce a high overhead. On the other hand, the use
of user-level threads brings an optimal performance in a se-
quential thread execution, like with cooperative multithreading.
All threads are managed into one main kernel thread. Running
a thread becomes almost equivalent to a simple function call.
Figure 1 points out an 13.3x acceleration compared to the
kernel thread version. Unfortunately, user-level threads do not
support thread-level parallelism, nor can they exploit the host
system multiple cores.
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Figure 1. SystemC 2.2.0 analysis. Execution of the benchmark TLM1
with N=256 (see section VI-A) on an Intel i7-2600K.

In order to have both the reactivity of user-level threads and
the parallelism offered by kernel threads, mixed approaches
have emerged. One kernel thread per core, named worker,
is used as a container to locally execute user-level threads
through ucontext primitives. Like in [7], [8], the whole simu-
lation is placed into a kernel thread. At the beginning of every
evaluation phase, this main thread can partially or completely

offload processes onto its pool of worker kernel threads. Once
all workers have completed the evaluation phase and reached
the barrier, the main thread collects and processes the request
queues from its workers.

Such solution has been implemented to study its perfor-
mance, and enhanced with a software hierarchical process
queue to take into account the high variability of SystemC
processes, as well as to optimize computing resource work-
loads, which allows a dynamic dispatching of processes among
multiple cores. This hierarchical queue is composed of a global
queue and a local queue in each worker. These small local
queues are initialized with a process to prevent all workers
to simultaneously access the global queue at the beginning
of the evaluation phase. Thus, a dynamic farming execution
of processes can be done during the evaluation phase. As
shown in Figure 2, our approach gives a similar performance to
the optimized user-level version of SystemC, when executing
on one core. However, with 7 workers, this implementation
brings a rather high acceleration with a benchmark that needs
few synchronizations (b) and no acceleration on the contrary
(a). This also means that this approach can only work when
synchronizations with the SystemC kernel remain low. This
paper’s objective is to evaluate a solution to reduce these
overheads in order to reach an acceleration in any SystemC
simulations.
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Figure 2. Workers-based kernel analysis on an Intel i7-2600K. (a)
execution of the benchmark TLM1 with N=256 ; and (b) execution
of the benchmark TLM2 with N=256 (see section VI-A).

In the rest of the paper, we present a complete system of
custom SW kernel and co-designed processor hardware ded-
icated to SystemC to exploit parallelism onto multiple cores.
The next section presents the software kernel architecture.

III. RAVES SW KERNEL

The RAVES SystemC kernel is fully compliant with Sys-
temC 2.2.0 [1], with the exception that not all SystemC
data types are available yet (but can be easily implemented).
This does not prevent the modeling of RTL architectures
since all data types in SystemC inherit from standard data
types. The other limitation is that all SystemC objects must
be dynamically allocated and debug facilities have not been
implemented yet. The initialization and elaboration phases will
not be taken into account into our results.



This kernel is highly inspired by our mixed implementation
as it keeps the concept of the global process queue and the
farming execution. Nonetheless, to reach better performance
no linux kernel is used. In the RAVES kernel, the linux kernel
thread workers are removed and replaced by a very lightweight
system software. This micro-kernel has been optimized to
support the execution of SystemC processes. It supports the
creation of thread contexts, process allocation, process pre-
emption and migration. With these modifications, we ensure an
efficient implementation, as it can be done with QuickThreads,
but with multicore processing.

As explained in the previous section, our scheduling strat-
egy is based on a farming model of SystemC processes
(SC METHODs and SC THREADs). Only the evaluation
phase is executed in parallel on multiple cores. The other
SystemC phases are still sequentially executed. Therefore,
all processes are synchronized before the beginning of the
update phase. The hierarchical queue is replaced by a hardware
global queue for a higher performance. This process queue
is used to store all to-be-evaluated SystemC processes for
the evaluation phase. An API of about 30 functions has
been developed for the debugging and for all communications
between RAVES entities. Thanks to this API, all processes are
able to trigger immediate or delta notifications, or for instance,
to communicate with the process queue.

In addition, a simulation manager is used to launch and
interleave different SystemC simulations. Multiple different
or same simulation instances can be simultaneously executed
on the RAVES architecture. Moreover, with our kernel, it is
possible to instantiate a clock that can generate only positive
edges, cutting down by 2 the time spent in the clock evaluation.
This clock will be used in all our experiments using RAVES.

However, as shown in Figure 3, this full-software RAVES
kernel implementation still comes with a significant overhead
due to all sequential phases, which can reach 70 % of the
total execution time. The useful execution time in a SystemC
simulation is the evaluation phase only. In most cases, the delta
notification and update phases mostly limit the performance
and scalability. In particular, the two main overheads come
from (1) the time spent to find all sensitive processes from a
given event in the immediate and delta notification phases, and
from (2) the update phase (up to 20% overhead).

We next present a co-designed custom HW architecture
to cut down the kernel overhead and enhance scalability and
performance.

IV. RAVES HW ARCHITECTURE

The RAVES hardware architecture is a standard homo-
geneous shared-memory multicore architecture, which comes
with a specific SystemC controller. A set of homogeneous
cores has been used to support a dynamic dispatching of Sys-
temC processes. In addition, all these cores use a shared mem-
ory since SystemC simulations require a lot of synchroniza-
tions. The SystemC controller is a standard processor, named
SystemC Kernel Unit (SKU), with a hardware accelerator
named SystemC Kernel Accelerator (SKA). This customized
processor is used to execute the simulation manager and to
interleave multiple SystemC simulations. The SKA reduces
kernel and synhronizations overheads.
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Figure 3. SW RAVES kernel analysis. Execution of the synthetic
benchmarks presented in section VI-A on an Intel i7-2600K.

As depicted in Figure 4, this architecture is composed of:
the SKU and the SKA to execute the SystemC kernel, a set
of homogeneous Agent Processor Cores (APC) to evaluate
SystemC processes, a Memory Management Unit (MMU), a
multibus network, a unified shared L2 cache, and a DDR3
controller. The CPU represents the master processing unit that
asks for SystemC simulations on RAVES. Depending on the
chosen coupling level, the CPU could be a host-PC.
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Figure 4. HW RAVES architecture.

The SKA is composed of three main hardware parts: (1) a
fast process search engine, (2) a Finite-State-Machine (FSM)
that manages the different SystemC phases accelerated in
HW and the global process queue, and (3) an update phase
accelerator. More details on the execution model are presented
in Section V.

The fast process search engine implemented into the SKA
helps to easily find all sensitive processes from a given
event. As depicted Figure 5, for each event, a linked list
of sensitive processes is stored into different complementary
memories, and initialized during the elaboration phase. The
event search engine is composed of different memory banks,
with one comparator per bank. A counter is also used to
address the same line of each bank. The event is presented



in parallel to each comparator and the counter is incremented
until the event is found. The output gives the address of the
beginning of its sensitive process list. A hash function could
also be implemented to manage a larger number of events and
processes but this was not necessary for our study.
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As shown in Figure 6, the FSM manages the immediate
notification and delta phases, as well as the activation of the
evaluation and update phases. The global process queue is
filled in by the software kernel at the beginning of a new
simulation cycle, or during the immediate or delta phases.
After each event notification or signal value modification,
agents push an immediate or delta event in 2 distinct event
queues. These queues are then used, during the immediate and
delta notification phases, to find the next processes to evaluate.
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Figure 6. SystemC Kernel Accelerator FSM.

The update phase is a HW/SW implementation. The parts
that cannot be parallelized in software are accelerated on
hardware. The SW part has been integrated into the evaluation
phase in order to distribute its complexity among all agents.
Each sc signal owns 2 write buffers next value odd and
next value even, and a current buffer m value. In addition,
each sc signal owns a HW current parity register and an HW
update register into the SKA. The parity value represents the
status of the update flag stored into the register. As depicted
in Figure 7, each read or write starts by updating its current
buffer from a write buffer, according to the current parity value
returned by the SKA. During a write, if the new value is
different from the current value, a delta event is pushed and
a request is sent to the SKA to ask for a future update of the
parity value. This request sets the update register to ’1’ into the
SKA. The number of registers corresponds to the maximum
number of sc signal that can be instantiated. Then, the update
phase only consists in doing a parallel bit-to-bit exclusive OR
between the update registers and the current parity ones.
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V. RAVES EXECUTION MODEL

At reset, the SKU core loads the simulation manager code
from the SysC kernel memory and waits for a CPU command,
whereas APCs wait for evaluation requests after booting from
the Agent kernel memory. A CPU-host processor can ask the
SKU to execute new SystemC simulations by triggering an
interruption through the system bus. Then, thanks to the MMU,
the simulation manager loads and allocates the corresponding
code into the DDR.

When ready, the SKU core preempts itself to execute
the SystemC simulation. The SystemC kernel starts by bind-
ing and elaborating the simulator. The instantiation of each
SC THREAD asks for the creation of its context and stack by
the MMU. In addition, a unique identification number, used for
any communications with the SKA, is requested to the SKA for
each new sc signal and SystemC process. Concerning process
sensitivity lists, all information are also sent to the SKA to
initialize the event search engine.

After this initialization, all processes are asked to be
evaluated (except those with the dont initialize command), by
pushing them in the SKA process queue. Finally, the SKU
core preempts itself to return to the simulation manager. The
simulation manager waits for the end of the different phases
managed by the SKA, and is also ready to manage other
requests coming from the CPU. As soon as the SKA process
queue is empty after the delta and immediate notification
phases, the simulation manager launches again the SystemC
kernel. Then, the timed notification phase is performed and
the simulation cycle is completed. The SystemC kernel is
terminated if a user-provided maximum simulation time is
reached, or if there is no more process to evaluate. Then, the
SKU resumes to the simulation manager. Else, a new complete
cycle is started again.

Each agent is waiting for an evaluation request from
the SKA. When the interruption is received, an interruption
routine pops a process from the SKA process queue. If it is a
SC METHOD, the agent initializes its context and executes the
body of the corresponding function. On the contrary, if it is a
SC THREAD, the agent restores the previous context, gets the
previous PC, executes the function until a wait is encountered,
and finally saves its context. Because the process allocation



is dynamic, a cache flush and invalidation is done after each
evaluation.

VI. EVALUATIONS

In this section we evaluate the performance of RAVES
using a virtual prototype implemented in SystemC/TLM. Sec-
tions VI-A and VI-B present our experimental setup and
benchmarks. Finally, section VI-C analyses RAVES perfor-
mance and limitations.

A. Benchmarks

In order to evaluate RAVES performance, 10 synthetic
benchmarks are considered. Each of them is highlighting a
specific part of the SystemC kernel.
• The benchmark TLM1 makes N masters initiate transactions

towards N slaves at each clock cycle (TLM). Each master is
implemented as a SC THREAD and has an exclusive access
to its slave. It represents a cycle-accurate implementation of
a multicore TL model.
• The benchmark TLM2 implements N Instruction Set Sim-

ulators (ISS) based on ArchC 2.0 [16] that communicate
with their private memory. Each ISS successively executes
10 instructions and then synchronizes with the kernel. It
represents an ideal implementation of a virtual MPSoC.
• The benchmarks INV, or INVth, is a chain of N inverters

composed of SC METHODs, or SC THREADs. Only the first
inverter is synchronized with a clock. The other processes are
woken up through immediate notifications.
• The benchmarks SHIFT, or SHIFTth, is a shift register of

N registers composed of SC METHODs, or SC THREADs.
It represents a typical RTL implementation with pipelined
parallelism. All processes are sensitive on a positive edge of
the clock.
• The benchmarks FILTER, or FILTERth, is N 16-stage RTL

Finite Impulse Response filters, composed of SC METHODs,
or SC THREADs, which outputs are connected through a
selection block that picks out the highest value. It represents
a typical RTL implementation with structural parallelism. All
processes are sensitive on a positive edge of the clock.
• The benchmark MS1 is a master that communicates to N

slaves through N SystemC ports. At each clock cycle, N
events are triggered and each of the corresponding sensitive
SC THREAD process is executed.
• The last one MS2 is a master that communicates to N slaves

through 1 SystemC port. At each clock cycle, only 1 event
is triggered and the N corresponding sensitive SC THREAD
process are executed.

The number of simulated cycles is constant and inde-
pendent of N. Table I summarizes their complexity by the
total number of SystemC processes and by the number of
evaluation phases per simulation cycle that also represents the
synchronization demand with the SystemC kernel.
B. Experimental setup

We designed a virtual prototype of RAVES within the
SESAM environment [17]. SESAM is a SystemC/TLM simu-
lation framework that eases the architecture exploration of mul-
ticore platforms. Within this framework, all communications
and modules are timed. In addition, all memory and network-
on-chip contentions are modeled. According to [18], accuracy
is higher than 90 %.

Benchmarks # SystemC # evaluation phases
processes per simulation cycle

TLM1, TLM2 1 + N 1 + (2)clk

INV, INVth 2 + N N + 1 + (2)clk

SHIFT, SHIFTth 3 + N 1 + (2)clk

FILTER, FILTERth 4 + 43 ·N 1 + (2)clk

MS1, MS2 1 + N 2 + (2)clk

Table I. COMPLEXITY ANALYSIS OF BENCHMARKS DEPENDING
ON THE PARAMETER N. (x)clk MEANS x ADDITIONAL

EVALUATION PHASES PER SIMULATION CYCLE DUE TO THE
CLOCK. THIS VALUE IS DIVIDED BY 2 ON RAVES WHEN USING

THE POSITIVE-EDGE-ONLY CLOCK.

The SKU is a RISC processor and comes with an Interrupt
Controller (IC), 32KB L1 instruction and data caches, a local
memory and its SystemC Kernel Accelerator (SKA). APCs are
also RISC cores with 32KB L1 instruction and data caches;
1 to 64 cores will be considered. All L1 caches use LRU
write-back and write-allocate policies, as well as 16B blocks.
All cores can have an access to 2 local shared memories,
which contain the system code, and an interleaved shared
8-bank 4MB L2 cache. The multibus is a 64-bit 6-cycle-
latency network-on-chip. On the contrary, the control network
is a simple 32-bit 6-cycle-latency bus. The MMU is used for
dynamic allocation and to transfer SystemC simulation code
from external memory to the DDR.

This paper will consider 3 different kinds of RISC cores.
It demonstates the benefits of integrating more complex cores.
The first one, core A, is based on the Mips24K core [19]
provided by SESAM as a functional Instruction Set Simulator
(ISS). Based on the study in [20], the IPC for this 8-stage
pipelined RISC is 0.78. The second one, core B, is based on a
dual-issue superscalar ARM Cortex A9 core (r0p1) from the
CoreTile Express A9x4 board [21]. The third one, core C,
is based on a 3-way VLIW core from the Tilera TilePro64
chip [22]. Only core A is simulated. With the 2 other cores,
results from real platforms are injected. By executing all
benchmarks with the RAVES SW kernel on the 3 cores, we
get an acceleration factor between them. This factor is applied
on core A results to mimics the performance that could be
expected by integrating cores B and C into RAVES.

RAVES performance is compared to an Intel i7-2600K at
3.7 GHz running SystemC 2.2.0 on a RHEL6 Linux 2.6.32
kernel. RAVES frequency is assumed to be 1 GHz with the
cores A and C, and 2 GHz with the core B, except for
the networks-on-chips, the memories and the SKA which
are running at a frequency two-times slower. Measurements
are performed after the binding and elaboration phases. All
compilations have been done at level O3 with the same options
with GNU gcc 4.4.7.

C. Performance analysis

Figure 8-a represents the results obtained by executing
a synthetic benchmark executing 256 threads (SystemC pro-
cesses) on a 1-core RAVES architecture. Each of the threads
is composed of a given number of nop instructions. It shows
that the average thread length has a direct impact on the
kernel overhead and then on performance. With 10K-length
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Figure 8. RAVES results. (a) execution of 256 threads composed of different numbers of nop instruction on 1 A-core RAVES architecture
to analyze the impact of the thread size on RAVES performance; (b) execution of different numbers of 10K-length instruction threads on 64
A-core RAVES architecture to analyze the number of threads impact on RAVES performance; (c) study of the number of agents of A-core
RAVES architecture with the benchmark TLM1 and N=256; and (d) RISC core study for agents on a 64 core RAVES architecture with all
benchmarks.

instruction threads, this overhead is reduced to 20 %. By
keeping this value and increasing the number of threads on
a 64-core RAVES architecture, we show in Figure 8-b that the
maximum theoretical acceleration is around 43x with 128 or
256 threads. The execution time increases when the number
of threads is greater than the number of cores. We observe a
slowing down at 64 cores mainly because of our shared L2
memory, which hit rate drops to 68.5 %.

Figure 8-c represents the result obtained with TLM1 and
N = 256. The maximum acceleration is about 14x. With
this benchmark, threads are smaller (∼ 1K). The kernel over-
head impacts more performance. Even if the L2 becomes a
bottleneck when the number of cores increases, the speed-up
remains the more significant on 64 cores. For RTL benchmarks
like FILTER and FILTERth, it remains around 11x. On the
contrary, the benchmark TLM2 reaches an acceleration of
20.6x on 64 cores, thanks to the high concurrency brought by
ISSes. With RAVES, SC METHODs and SC THREADs are
very similar and only differs by one context saving. Indeed,
the initialization of the context of an SC METHOD and the
loading of the previous context of an SC THREAD before
their evaluation have the same cost. Therefore, performance
is equivalent with our approach.

Figure 8-d depicts the execution length of all benchmarks
executed on a 64-core RAVES architecture, when using differ-
ent RISC cores. It is interesting to notice that both cores B and
C have similar results. Indeed, our SystemC benchmarks are
very irregular and few data-parallelism can be exploited. Thus,
the internal parallelism of core C does not provide a significant
improvement. A higher frequency and a more performant
misprediction unit can get a higher performance. This is the
reason why, core B demonstrates a significant improvement,
especially with complex RTL benchmarks, compared to core
A. A dual-issue superscalar architecture is our best candidate
among available and selected RISC cores.

Figures 9-a and 9-b highlights the acceleration provided
by our SKA. As expected, when the simulation needs to
frequently interact with the kernel, as with the benchmark
FILTER on Figure 9-a, the SKA has a high impact on perfor-
mance. The maximum acceleration obtained on a 64 B-core
RAVES architecture compared with a software-only RAVES
version is around 3.2x. The acceleration of the SystemC
kernel drastically cuts down the control overhead. Even if we
add in the evaluation phase a part of the update phase (that
explains why the evaluation phase time increases with the HW
acceleration), the dynamic dispatching of threads, coupled to
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Figure 9. RAVES results. study of the SystemC kernel hardware acceleration on a 64 B-core RAVES architecture by comparing a SW-only
version of RAVES with the HW/SW RAVES implementation with (a) the benchmark FILTER and N=16, and (b) the benchmark TLM2 and
N=256; (c) acceleration study for all benchmarks of 64 B-core RAVES architecture compared to a QThread SystemC 2.2.0 implementation
running on an Intel i7-2600K; and (d) comparison study between the Intel i7-2600K, the Tilera TilePro64 and a 64 B-core RAVES architecture.
The acceleration is calculated using the user-level thread SystemC execution time on the Intel i7-2600K as reference for each benchmark.

a low kernel overhead, delivers a high scalability to RAVES.
On the contrary, the acceleration remains low when simulating
ISSes or highly concurrent SystemC processes, like with the
benchmark TLM2 on Figure 9-b. Indeed, most of the execution
time is spent by agents and the SKU has a little impact on
performance.

Figure 9-c points out the accelerations obtained with a 64
B-core RAVES architecture compared to the Intel i7-2600K
running SystemC 2.2.0 with user-level threads. Accelerations
reach up 1.99x to 4.47x for the TLM benchmarks TLM1
and TLM2. Whereas Figure 2 shows that no acceleration
can be obtained with a software-only approach on i7 with
TLM1, the same benchmark scales on the RAVES architecture
thanks to our optimized parallel SystemC implementation and
our hardware SystemC kernel accelerator. Concerning, RTL
benchmarks (all except TLM1 and TLM2), the maximum
acceleration remains around 1.12x. The frequent need for
kernel synchronizations reduces the performance. Even with
our approach, accelerations remain low or negative compared
to a sequential execution using user-level threads on a high-end
x86 processor.

Finally, Figure 9-d depicts a comparison study with the
Intel i7-2600K with user-level threads, a 64 B-core RAVES

architecture and the Tilera TilePro64 running at 700 MHz. The
results on the TilePro64 architecture highlight that only highly
parallel SystemC simulations can scale with the number of
cores. However, the 44 cores remain unsufficient to compete
with the i7. On the contrary, the RAVES architecture is 2.85x
to 4.47x more performant than the i7.

RAVES is the only solution to support RTL/TLM sim-
ulations that does not bring any strong structural or usage
limitations. Moreover, this study demonstrates that significant
accelerations can be obtained even with a many-core platform,
as long as a very efficient SystemC synchronizations and thread
management can be performed. In addition, our approach can
be easily extended. By using more complex and performance-
oriented cores, RAVES could outperform the presented results.

Among recent notable work, it is with the SCGPSIM
tool [13] that we found the most accurate information to
compare our results. With a JPEG benchmark they obtained
a 6.7x acceleration with their GP-GPU solution compared to
a user-level thread SystemC implementation on an Intel i7
at 2.8 GHz. Thus, at equivalent frequency the acceleration is
similar to what RAVES can reach. However, their solution is
only efficient with SystemC models with highly independent



processes and data-level parallelism. We believe that it is rarely
the case in practical use-cases, and that SystemC processes
usually need a strong interaction with the kernel.

An i7-2600K is about 216 mm2 (Intel 32 nm) and 95 W,
whereas a 64 B-core RAVES platform is about 229 mm2

(TSMC 40 nm) and consumes about 64 W (values estimated
by adding cores and memories/caches information obtained
from [23] and [24]). As a result, this RAVES platform can get
a better performance with a similar complexity and a reduced
energy consumption.

VII. CONCLUSION

This paper presented RAVES, a highly-parallel special-
purpose multicore architecture dedicated to SystemC simu-
lations. Our light-weight user-level threads and co-designed
custom SystemC kernel bring to RAVES a unique capacity
to accelerate RTL and TLM simulations on many cores.
Our evaluation suggests that a 64-core RAVES processor can
deliver better simulation performance than a high-end x86
processor. It can reach up an acceleration of 4.7x compared
to a user-level thread SystemC implementation running on an
i7-2600K with small RISC cores. We believe that these results
could be improved by using more powerful cores. This is the
reason why our future work will focus on the design of a
hardware RAVES prototype with more performance-oriented
cores. We will also work on a distributed RAVES system to
increase again our performance.

REFERENCES

[1] Accellera Systems Initiative, “SystemC 2.2.0, http://www.accellera.org.”
[2] Y. N. Naguib and R. S. Guindi, “Speeding Up SystemC Simulation

through Process Splitting,” in IEEE conference on Design, Automation
and Test in Europe (DATE), Nice, France, April 2007, pp. 111 – 116.

[3] R. Buchmann and A. Greiner, “A Fully Static Scheduling Approach for
Fast Cycle Accurate SystemC Simulation of MPSoCs,” in International
Conference on Microelectronics (ICM), Cairo, Egypt, December 2007,
pp. 105 – 108.

[4] K. Lun, D. Mller-Gritschneder, and U. Schlichtmann, “Removal of
Unnecessary Context Switches from the SystemC Simulation Kernel for
Fast VP Simulation,” in IEEE International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS),
2011, Samos, Greece, July 2011, pp. 150 – 156.

[5] H. Ziyu, Q. Lei, L. Hongliang, X. Xianghui, and Z. Kun, “A Parallel
SystemC Environment: ArchSC,” in IEEE International Conference on
Parallel and Distributed Systems (ICPADS), Shenzhen, China, Decem-
ber 2009, pp. 617 – 623.

[6] J. Peeters, N. Ventroux, T. Sassolas, and L. Lacassagne, “A SystemC
TLM Framework for Distributed Simulation of Complex Systems with
Unpredictable Communication,” in IEEE Conference on Design and
Architectures for Signal and Image Processing (DASIP), Tampere,
Finland, November 2011, pp. 1 – 8.

[7] P. Ezudheen, P. Chandran, J. Chandra, B. Simon, and D. Ravi,
“Parallelizing SystemC kernel for fast hardware simulation on SMP
machines,” in ACM/IEEE Workshop on Principles of Advanced and
Distributed Simulation (PADS), Lake Placid, New York, USA, June
2009, pp. 80 – 87.

[8] C. Schumacher, R. Leupers, D. Petras, and A. Hoffmann, “parSC:
Synchronous Parallel SystemC Simulation on Multi-Core Host Ar-
chitectures,” in ACM International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), Scottsdale, Arizona,
USA, October 2010, pp. 241 – 246.

[9] P. Combes, E. Caron, and B. Chopard, “Relaxing Synchronization in
a Parallel SystemC Kernel,” in International Symposium on Parallel
and Distributed Processing with Applications (ISPA), Sydney, Australia,
December 2008, pp. 180–187.

[10] I. Pessoa, A. Mello, A. Greiner, and F. Pêcheux, “Parallel TLM Sim-
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