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Abstract— Due to the improvement of deep sub-
microelectronic technologies, more and more transistors are
available inside a die. But these improvements are difficult to
exploit because of design complexity and time-to-market
constraints. Thus, ASIC performances can not follow the
microelectronic evolution. Regular, modular and reconfigurable
architectures can easily take into account these evolutions because
they are based on the repetition of small units.

Reconfigurable devices are used to map different kinds of
applications that exploit virtual hardware concepts. A more
efficient utilization of such circuits is to adapt application at the
run-time. During the process of an application, computing
methods can change. Therefore, the next generation of
reconfigurable architectures should provide many computing
methods such as MIMD, SIMD, VLIW or multi-threading.

Any application is composed of two parts: a control part for
operation scheduling and a computation part required for
operators. Existing reconfigurable architectures use the same
structure to implement these two parts. The solution presented in
this paper is based on two reconfigurable resources. The first is
suitable for control processes and the second for computation
purposes.

Index Terms—dynamic reconfiguration,online reconfiguration,
parallelism, reconfigurable architecture

[. INTRODUCTION

R ECONFIGURABLE devices are composed of functional
and interconnect resources. These resources can be
arranged to implement a specific application. Semiconductor
roadmaps indicate that integration density of regular structures
(like memories) increase more quickly than irregular ones (cf.
Table 1). So, reconfigurable architectures are suitable for
future technology evolutions.

TABLE 1
INTEGRATION DENSITY FOR FUTUR VLSI DEVICES [1]

Year 1999 2001 2003 2005 2009 2012
Process (nm) 180 150 130 100 70 50
DRAM (bit/chip) 1,07G 1,7G 429G 172G 68,7G 275G

MPU . 2IM 40M 76 M 200M 520M 14G
(transistors/chip)

The key feature of reconfigurable architectures is the ability

to perform hardware computations to increase performances,
while retaining much of the flexibility of a software solution
[2].

These architectures are very heterogeneous because their
characteristics are adapted for many domains of applications
(Co-processing acceleration [3], Hardware emulation [4], Fault
tolerance [5], etc.). A classification based on the available
resources of reconfigurable architectures, is presented below:

* The most famous fine grain reconfigurable architectures
are FPGA (Field Programmable Grid Array). These
devices merge two kinds of resources: the first one is an
interconnection network and the second one is composed
of processing blocks, based on special memories called
LUT (Look Up Table). Reconfiguration process consists
in using the interconnection network to connect
processing elements. Furthermore, each LUT is
configured to perform the required operation.

e Some coarse grain architecture [5,6] has a reconfigurable
network of interconnectors and an array of static
processing elements. Processing methods depends on the
network topology. For instance the RAPID architecture
[6] is adapted for data-flow processing even though
SYNTOL [5] is designed to perform SIMD (Single-
Instruction Multiple Data) processes.

e Some others architectures use a static network with
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reconfigurable processing blocks. These architectures
[7,8] have been developed to merge together a processor
with reconfigurable units. Reconfigurable is used like
extra ALUs. These architectures require powerful tools,
which are able to manage HW/SW
(HardWare/SoftWare) partitioning [9].

e Besides, the DISC [10] architecture focuses on the
duality between reconfigurations and instructions.
Indeed, it is very hard to define the frontier between
reconfigurable architectures and static ones. For instance,
an instruction of a processor can be considered as a
reconfiguration because it changes the data path for
performing the required operation.

The main goal of all reconfigurable architectures consists in
mapping a large set of applications. As shown in Fig.1, any
application can be composed of two different parts:

e acontrol part for operations scheduling;
* acomputation part for computing support.

These two parts have quite different characteristics for
implementations. Indeed, the first one handles small data but
requires global communications. On the contrary, the second
one processes large data and uses local communications.

The reconfiguration frequency of these two parts are also
different. In a processor, the control part is managed at each
cycle whereas operators are fixed. Hybrid architectures like
ONECHIP[7] or CHIMAERA[S] are based on a processor
with extra reconfigurable operators. The instruction set is then
adapted for a specific application. The reconfiguration
frequency is quite low because the control is managed by the
processor.

All existing architectures use the same structure to
implement these two parts. Fine grain architectures are better
adapted for performing control tasks than arithmetic tasks,
which are well adapted to coarse grain architectures. In order
to solve these drawbacks, some commercial architectures [11,
12] provide mechanisms that make arithmetic implementation
more efficient. For instance, some multipliers are implemented
in the VIRTEX [11] architecture. It might be advantageous to
split reconfigurable resources into two parts. The first would
deal with control processes, the second with computation
purposes.

Within a given application, it is common to find different
level of algorithms. For example, low-level image processing
like convolution or filtering will often run on SIMD structures,
whereas high-level ones as classification or face recognition
are suitable for MIMD (Multiple Instruction Multiple Data)
architectures. Future architectures must provide many
computing modes such as MIMD, SIMD, VLIW (Very Long
Instruction Word) and multi-threading in a complex
application. Although the physical hardware is limited, the
virtual one can be much larger thanks to the reconfiguration
process. The MATRIX [14] architecture focuses on this
concept. In the respect, this paper will introduce new
paradigms of architecture able to manage such kinds of
parallelism processes (called RAMPASS: Reconfigurable

And Advanced Multi-Processing Architecture for future
Silicon System).

II. FUNCTIONAL DESCRIPTION OF RAMPASS

In this section, the global functionality of RAMPASS is
described. It is composed of two main reconfigurable parts (cf.
Fig. 2):

e one dedicated to the control of applications called

Reconfigurable Array of Control (RAC);
e one dedicated to the computation named Reconfigurable
Array of Operators (RAO).

In the first part, these two main elements are presented. In
the second part, the working of the architecture is more
detailed. Finally, the end of this section underlines the strong
points of RAMPASS.

A. Overview

A State Graph (SG) is a classical model, which describes
the control part of an application. This powerful model permits
to represent complex computation concepts such as SIMD,
MIMD, VLIW and multi-threading.

Thus, the first block can describe and store an application as
a SG. These SGs are composed of states and transitions. States
drive the computation elements in the RAO, and events
coming from the RAO validate transitions in the SG. In order
to allow SG implementations, this structure needs boolean
logic and a powerful connection network.

An application described with SGs can be directly mapped
in this block. Therefore, no translation in a specific language is
required. The application remains user-friendly from the
specification to the implementation.

RAC block can be seen as a cache memory instruction for
reconfigurable elements. As in classical one, the efficiency of
this block is ensured by code redundancies.

Whole SGs can obviously not be mapped in the RAC, so a
mechanism as a dynamic reconfiguration has been introduced
in order to permit to increase the virtual size of the
architecture. Moreover, auto-routing mechanisms have been

Control block (RAC) + Central
instruction memory A memory
(MEM C)
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Channels of communication :

A = Description of SGs and instructions
B = instructions and configurations

C = events

Fig. 2. Synoptic of RAMPASS
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introduced in the RAC block to simplify SG configuration.
Because the parallelism flexibility is ensured by the RAC part,
we will focus on it and not discussed about the second block
where computations elements are implemented.

B. Mapping and running an application with RAMPASS

In this part, the configuration and the execution of an
application in RAMPASS are described. The application is
stored in an external memory. A boot address must be defined
to permit the boot of RAMPASS. Then, the SG is loaded in
the RAC from this address. As soon as the SG begins to be
stored in the RAC, its execution starts. Indeed, the
configuration and the execution are simultaneously performed.
During the execution, the SG stored in the RAC is
continuously updated. The reconfiguration of the RAC is self-
managed and depends on the application progress. This
concept is called auto-reconfiguration and allows the
architecture to self-manage its configurations.

The execution is based on few steps, which are initiated by
the activation of a state stored in the RAC. When a state is
activated (when a token is received), the associated instruction
is sent to the RAO (cf Fig. 4). According to the instruction, the
RAO returns an event to the RAC. This event corresponds to a
transition in the SG mapped in the RAC. These transitions
permit the propagation of tokens in SGs.

The architecture is globally asynchronous. Each block has
its own mechanism of synchronization. Blocks are
synchronized by acknowledgement protocols. The main
protocol is between the RAC and the RAO because it controls
the course of the application. RAC sends instructions and
configurations to the RAO, which generates events.

C. Strong points of RAMPASS

Lastly, we focus on the main advantages of this new
architecture. According to the application, computation grain
is easily scalable. For example, a filter can be realized in at
least two different ways. In the first place, the filter can be
completely loaded and controlled by only one state, if the
physical resources allow it. In the second place, simple
operators as multiplier and adder can be physically stored in
the computation block and driven by state graphs, stored in the
control block. Tradeoff between computation grain and control
has to be found for each application.

RAMPASS is especially dedicated to parallel algorithms.
Because of the structure of the architecture, different kinds of
parallel architectures can be loaded in RAMPASS as SIMD,
MIMD, VLIW or multi-threading. Moreover, different kinds
of reconfiguration allowed by RAMPASS decrease the
resource limitation.

III. FUNCTIONAL DESCRIPTION OF THE CONTROL BLOCK: RAC
BLOCK

In this third paragraph, more details of the control block are
given. First, the different elements composing the RAC block
are described. Then, the configuration and the execution of the
RAC block are explained.

As previously introduced, the RAC is a reconfigurable block
dedicated to the control of an application. It is composed of
five units (cf Fig. 3): the Controller, the CAM (Content
Addressable Memory) and the LeafFinder are used to
configure the RAC net and the instruction memory.

Although execution and configuration are
concurrently, it is important to understand the
functioning of each phase separately.

running
inner-

A. Overview

In this section, the five elements composing the RAC block
are presented. These blocks are involved in auto-
reconfiguration, auto-routing, and parallelism mechanisms.
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Fig. 4. Relation RAC net / Instruction memory



RAC net

This element is the core of the RAC block. It is composed
of two resources: cells and interconnectors. The geometry of
the SG is loaded in the RAC net. One state of SGs is
implemented by one cell. The RAC net applies signals to the
instruction memory to send the instruction stream to the RAO.
The main characteristic of this unit is to physically implement
the control of the application.

The RAC net is partially dynamically reconfigurable.
Configuration and execution of SGs are fully independent.
RAC net owns primitives to ensure the auto-routing. (RAC net
will be developed in more details in the part IV).

Instruction memory

This memory contains instructions, which are loaded by the
Controller for the RAO. To ensure parallel working, the
instruction memory is scalable according to the length of the
instruction. As shown in Fig. 4, the memory line is split in
several words. Each line is separately driven by a state. The
position in the line is given by the Controller during the
storage (bit selecting).

Controller

This unit allows the connection between cells. It sends all
the useful information to connect cells in the RAC net, which
can auto-route itself. It can manage two kinds of connections
between states:

* a new connection (the next state is not mapped in the

RAC net),
* a connection between two states already mapped in the
RAC net.
It also releases resources when the RAC net is full.
CAM

This element associates each cell of the RAC net used to
map a state of a SG with its address in the external memory. It
is used by the Controller to check if a cell is already mapped
in the RAC net. The CAM can select a cell in the RAC net
when its address is presented at the input of the CAM.

LeafFinder
This element identifies all the last cells of the active SGs

LeafFinder
RAC net CAM /
» @adl | 0
» @ad2 | 0
» @ad3 ] 1
» @ad4 | 1

|
(X €3

O Mapped state driving an instruction
"t Leaf cell
e token
ex = event coming from the RAO
(@adX = address in external memory where X is the state ID

Fig. 5. Relation between RAC net /| CAM & LeafFinder (note: relations
with the Controller and Instruction memory)

mapped in the RAC net, which are called “leaf cells”. It is a
semi-mapped state which does not yet have an associated
instruction.

B. Configuration

In this section, the operations of the different blocks
involved in the implementation of a SG are presented.

All the application is stored in the external memory as a SG
description. Each state description contains two kinds of
information: the future instructions sent to the RAO and the
descriptions of SGs. These future instructions will be loaded in
the instruction memory by the Controller, and descriptions of
SGs will be also loaded in the RAC net by the Controller.

Figure 5 shows the relations between RAC net and CAM &
LeafFinder during the configuration of the RAC net. A simple
OR divergence and convergence graph (cf . Fig. 6) have been
chosen as an example. At this time of the course of the
application, only a part of the SG is mapped in the RAC net:
two fully states (state 1 and state 2), and two leaf cells (state 3
and state 4) are mapped. The Controller scans continuously
the LeafFinder to detect a leaf cell in the RAC net (for
example either state 3 or state 4). As soon as one is detected,
the LeafFinder selects in the CAM its address in the external
memory (for example either @ad3 or @ad4). This address is
sent to the Controller, which reads the description of the
corresponding state in the external memory. This description
contains the configuration of the state and the addresses of its
following states. In order to know whether the cell is already
mapped in the RAC net, it supplies this address to the CAM.
According to the result, the Controller sends the appropriate
primitive to the RAC net to realize the connection (either a
new connection, between state 4 and state 5, or a connection
between two states already mapped, between state 3 and state
4). The RAC net notifies the Controller when the connection
has succeeded. Then, the Controller ensures the update of:

* the CAM with the address of the new mapped state;
» the LeafFinder to define the new cell as a leaf cell;
* the instruction memory with the correct instruction.

When a connection fails, the RAC net indicates an error to
the Controller. The Controller deallocates resources in the
RAC net and searches the next leaf cell with the LeafFinder.
These two operations are repeated until a connection succeeds.

C. Run-time

The two elements implied in the run-time are the RAC net
and the instruction memory. As a cache memory, the RAC net
“decodes” the address of the next instructions which will be
sent to the RAO.

As shown on figure 4, a cell, which implements a state, is
associated with an instruction stored in the instruction
memory. When the active state (marked by a token) receives
its associated event, its related instruction is sent to the RAO.
The split instruction bus, presented upper, allows different
kinds of parallelism introduced in the first part. For example,
the instruction A and B could be sent together to different
operators mapped in the RAO without creating conflict,



whereas the instruction C would be sent alone.
When the operation has finished, the cell transmits its token
to the following cells.

IV. DESCRIPTION OF RAC NET

In this section, more details of the core of the RAC block
are presented.

The RAC net works as an address decoder in implementing
SGs. This network permits to map physically the control of an
application using connections of cells. Its structure is a
network based on the duplication of two basic elements: cell
and interconnectors.

Elementary connections, which can be mapped in the RAC
net, are presented in Tab. 2. Linear connections and
divergences (AND and OR) are simple to realize. These kinds
of connections do not require additional cell to be
implemented. Divergent and linear connections are initiated by
one cell to find paths to new cells, whereas convergences are
initiated by several cells in order to connect one cell. So, the
convergent cell must be at the intersection of the different
initiating paths. That is why convergences are complex to map
in the RAC net.

As presented upper, the RAC net is auto-routed and can map
the different kinds of simple graph elements introduced in the
Table 2, since six modes have been defined inside cells.

Two kinds of networks have been also introduced:

* one dedicated to the token propagation which connects
cells together;

e one dedicated to events propagation coming from the
RAO.

So, the network for tokens must allow boolean operations in
order to implement OR and AND divergences. Reliability and
flexibility of the RAC net depend on the number of allowed
connections. Indeed, the higher the number of connections are
allowed, the better the architecture can adapt itself to a large
variety of SGs. This network is able to find and create paths
between states already mapped (cf Fig. 5 between states @ad3

Note: The marked state is state 2
© supplier cell of token
supplementary cell needed for the implementation
Fig. 6. (a) State graph — (b) implantation of the state graph
in the RAC net

and @ad4), or create paths between leaf cells and free cells to
implement new connections between states (cf Fig 5 between

state @ad4 and a future state — not represented). This is an
important characteristic of our network. The user has just to
describe the geometry of SG without taking care of the routing
in the RAC net. This routing is automatically done by the
network itself. The Controller only gives the description of the
geometry of SGs, since protocols between cells make possible
the auto-routing. Upon a Controller request, a cell is able to
find a free connectable neighbour and establish a connection.
Only three signals are required to perform these operations.

Besides, the network for events is a little less constraint. But
it must be sufficiently flexible to allow connections from
events coming from the computation block to each cell of the
RAC net.

TABLE 2
ELEMENTARY IMPLEMENTABLE PART OF SGS

Cost in RAC cell

. Interconnection
Possible geometry

vs. real graph complexity
g add none very simple
(& add none simple
add n cells for n complex
convergences (OR) P
20 add none simple

add n cells more
for n convergences
(AND)

very complex

#:

V. SIMULATIONS AND RESULTS

A functional model of the RAC block has been realized with
SystemC. In this part, the results of this model are given, and
examples of implementations in the RAC block are discussed.

The characteristics of this description language easily allow
hierarchical projects. Although SystemC is a hardware
description language, it has the flexibility of the C++ language
[16] and owns its paradigms.

A lot of different programming structures have been
implemented in the RAC block, e.g. exclusion mechanisms,
synchronisations between separated graphs, etc. Moreover, an
application of image processing (complex motion detection)
has been mapped. These results permit to consider interesting
performance improvements for future works in image
embedded systems. Furthermore, these simulations have
permitted to validate the paradigms of RAMPASS as auto-
routability and auto-reconfiguration during execution of SGs.

In this paper, only a simple graph presented in Fig. 6 is the
subject of a particular study. The chronogram (cf Fig. 7)
represents its simulation. It shows mapping and execution
steps of a simple state graph. The first part of the chronogram
clearly shows the overlap of the configuration and the
execution of the SG. Indeed, stateX signals and s, s, signals
move simultaneously. StateX signals, which indicate the end of



the implementation of a state, are involved in the
configuration. sy signals correspond to the presence of the
token in a cell. The second part of the chronogram shows the
progression of the token in the SG. This propagation through
the two branches of the SG is driven by events (e,). The last
three lines illustrate the concept of the split bus. Indeed, each
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ex = event from the RAO (involves in the execution of the SG)

sx = signal illustrate the presence of a token in a cell (involves in the
execution of the SG)

stateX reports that a state is implemented in the RAC net

Fig. 7. Chronogram during the implementation and the execution of a
simple SG (cf. Fig. 6 (b))

part is independently managed and shared between all states.

VI. CONCLUSION AND FUTURE WORKS

New architectural concepts are proposed in this paper. A
reconfigurable part dedicated to the control of applications is
detailed. This control is described using a state graph
representation. To perform this control, RAMPASS uses its
RAC net as an address decoder. This innovation consists in
using a reconfigurable technology to solve drawbacks of cache
memory. Thanks to state graph characteristics and the concept
of auto-routing, this structure is able to perform many kinds of
parallelism processes as SIMD, MIMD, VLIW and multi-
threading. The concepts of the RAC block have been
successfully checked by simulations.

According to the encouraging results, further works will be
performed. To evaluate performances of RAMPASS, a Cmos
model and a prototype of the RAC block will be made. But
before, the topology of the interconnection network (RAC net)
will be optimised. At the same time, a modelisation of the
RAO block will be performed.
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