
Hierarchical Network-on-Chip for Embedded
Many-Core Architectures

Alexandre GUERRE, Nicolas VENTROUX, Raphaël DAVID
CEA, LIST,

Embedded Computing Laboratory
Gif-sur-Yvette, F-91191, France;

Email: firstname.name@cea.fr

Alain MERIGOT
Institut d’Electronique Fondamentale

Université Paris Sud
Orsay, F-91405, France;

Email: alain.merigot@u-psud.fr

Abstract—The need for computing power drastically increases
and one good solution is to use many-core architectures. Besides,
complex embedded applications become data-dependent and
their execution time depends on their input data. For this
reason, on-line task and data allocation is needed to optimize
the architecture efficiency. Moreover, communications are a
complex problem in many-core architectures. Because of dynamic
allocation, communication paths and network loads become
unpredictable, which must be handled by the network. This paper
proposes an evaluation of different network topologies in terms of
performance and area for many-core architectures. It concludes
that hierarchical networks are the best trade-off. In particular,
the MultiCross topology is 10 times more efficient than the mesh
topology.

I. INTRODUCTION

In response to an ever increasing demand for computing
power, the performance of embedded system architectures
have improved constantly over the years. Today, multi-core
processors have become the mainstream in embedded sys-
tems [1]. In this context, according to ITRS [2], a 32% yearly
increase in the number of cores will be necessary to keep up
with the applications’ needs. ITRS assesses that in 2012, the
number of cores in a chip, will exceed 100 cores. In order to
guarantee a sufficient energy and area efficiency, each part of
the architecture must be optimized. In this paper, we will focus
on communication structures adapted to shared-memory many-
core architectures, also named Network-on-chips (NoCs) [3].
Processors are interconnected with local and shared memory
banks.

In addition, these many-core architectures must support
the execution of dynamic computation-intensive applications.
Algorithms have become highly data-dependent and their
execution times depend on their input data. Therefore, to
optimize the overall execution time, a dynamic data and
task allocation is necessary. This dynamic optimization and
the increase in the number of processors in a chip generate
important communication constraints. Indeed, an off-line task
partitioning imposes controlled and known communications,
whereas an on-line dynamic task allocation generates unpre-
dictable communications, i.e. network loads, message destina-
tions and sources, or message sizes. This can have an impact
on contentions and the efficient bandwidth of the network. For
these reasons, this dynamic context must be taken into account

in the interconnection design.
In the industrial world, multi-domain many-core architec-

tures already exist and use different kinds of NoCs. HL-256
from Plurality [4] uses a butterfly multistage network, TILE64
from Tilera [5] prefers multiple meshes, whereas Larabee
from Intel [6] implements multiple rings to interconnect
their processors. Actually, a NoC is characterized by many
parameters and its design space is very large. However, all
these parameters have to be accurately chosen to optimize the
architecture design. Virtual channels [7] or buffer sizes [8] are
some examples of dimensioning parameters. In this paper, we
will focus on the network topology, which has a very impor-
tant impact on performances, especially with a dynamic and
unpredictable context. To correctly size the architecture with a
dynamic task allocation, it is essential to use a regular network
to homogenize performances. In addition, the topology has to
support and limit contentions whatever are communications.

Some other network topology comparisons have been pub-
lished. In [9], Salminen et al. list many existing networks
and detail their whole parameters (the topology, the size),
as well as evaluation criteria. However, no performance or
area comparisons are done and their study cannot be entirely
used to design new many-core architectures. In [10], Tutsch
and Malek make an accurate comparison but only between a
mesh and a butterfly multistage topology. An other approach,
proposed by Murali and De Micheli [11], uses a tool to define a
topology according to application needs. From an application
graph, processors are organized around different topologies
and tasks are statically allocated on them. The average latency,
the area and the power consumption are used as exploration
parameters. Unfortunately, this tool cannot define a multi-
domain architecture, as well as NoCs in a dynamic execution
context. Finally, no existing study offers a large comparison
between many NoC topologies for multi-domain, dynamic
applications and shared-memory many-core architectures.

In this paper, 8 different NoC topologies are compared.
This includes 5 well-known basic interconnection topologies
named multibus, ring, multistage, mesh and torus. Hierarchi-
cal networks are also studied and 3 of them are proposed:
CrossTorus, CrossRing and Multicross. Performance compar-
isons will evaluate their abilities to support network loads,
whereas area comparisons with ASIC synthesis will measure



their area efficiency. These comparisons will explore NoC
topologies for a many-core architecture in a multi-domain
context.

The remainder of this article is organized as follows: section
II presents the simulation environment for the performance
comparison and the ASIC synthesis tool for the area com-
parison. Section III describes all studied networks. Then,
section IV presents an area and performance comparison.
An area efficiency analysis of these 8 basic and hierarchi-
cal networks completes this section. Section V explores the
different configurations of hierarchical networks in order to
find the best ones. Finally, section VI concludes on the best
network topology for many-core shared-memory architectures
and dynamic applications.

II. SIMULATION AND SYNTHESIS ENVIRONMENT

The comparison between our network topologies is done
with two main criteria in order to study their area efficiency:
the performance and the area. This section presents the envi-
ronment that is used for these evaluations.

A. Simulation Environment

To evaluate NoC performances, a simulation environment
is used to implement these 8 different topologies. This envi-
ronment performs approximate-timed TLM SystemC commu-
nications to provide accurate and fast simulations [12]. This
framework implements each network, traffic generator and
memory. The configuration of each network is described in the
next section. We consider only shared-memory architectures.
Thus, each communication is a request to a memory. Access
times and access conflict timings are computed into memories.
Traffic generators send only blocking read request with a fixed
data size.

1) Traffic Modeling: We propose to implement two kinds
of traffic into our traffic generators, in order to represent
two different applications. The first one is a uniform traffic
that matches with an unpredictable load in the network.
A “locality rate” parameter introduces a locality notion for
hierarchical networks. This corresponds to the intra-cluster
communication rate. The second one is a normal distribution
traffic that mainly represents local communications. It stands
for a “smart” application mapping on processors through the
network. The normal distribution variance gives the main
distance that can be reached by messages, whereas the mean
represents the closest memory from the traffic generator. Both
traffics are representative of a dynamic multi-domain appli-
cation. The message sending frequency can be dynamically
modified. The frequency controls the network load during the
simulation. When the message creation frequency is higher
than the sending rate, messages are buffered in an infinite FIFO
memory.

2) Network Modeling: The main part of this simulator is
the network modeling, because it gives the principal latency
information. All basic networks use the same framework to
estimate the time spent in it. This framework is described
in a single SystemC module. The network behavior can be

Fig. 1. Comparison between Noxim and our approach. (tg: traffic
generator)

described as follows. First of all, a request is sent to the
network and is stored in a list of pending requests. If it is the
first one in the list, it sets off an event and wakes up the main
thread of the network. This thread processes pending requests,
calculates the path taken by the request in the network and
computes a penalty in case of contention. Then, the request is
sent to the destination. When the response comes back, a wait
function is launched with the computed communication time
as argument. Finally, the response is sent back to the initiator.
In the response, the initiator has some information like the
number of crossed routers or the time spent in the different
modules of the MPSoC platform.

The difference between each NoC remains on the path de-
cision and the contention calculation, which provides informa-
tion on packet collisions. When a request is sent, an entry point
ID is given to the request to know the position of the initiator.
When the request enters in the network, this one begins with
the path calculation. Depending on the routing type and this
ID, the network builds a list of virtual routers and links. The
time used by a request to enter and exit the router is associated
with each element in the list. The network also calculates all
contentions with other requests already in the network. The
contention calculation is based on the comparison between
the path and the timing of the new request, and requests
already in the network. A proportional penalty is calculated
with the latency of the network, according to the request size
and the topology characteristics. For example, if two requests
are routed on two different buses in a ring network, they will
cross the same router without an added contention.

To validate the accuracy of our approach, some comparisons
have been done with the cycle-accurate Noxim simulator [13].
For the experiment, random traffics on a 4x4 mesh, with XY
routing using a wormhole technique, are used. Figure 1 shows
that our approach obtains an error inferior to 9% until the
network overload. After this saturation, our approach has more
pessimistic results than the Noxim simulator but this has no
impact on this study.

This framework has the particularity to support combina-
tions of basic networks. As a result it allows the simulation



of a wide range of hierarchical network. In order to build a
hierarchical network, a bridge must be placed between the
different basic network parts to perform a correct interface.
This bridge updates the requests and manages the number
of incoming requests at the same time. Updating a message
corresponds to changing the entry point ID of the request when
it crosses the interface between the NoCs. When a request
enters in another network, its entry point ID becomes the
bridge ID. A semaphore is needed in the bridge because a
TLM channel cannot block multiple requests. This case occurs
when two traffic generators send requests that need to transit
to another network through the same bridge. If these two
requests reach the bridge at the same time, they will access
concurrently to the same channel. So the bridge has to manage
these multiple requests to have a correct estimation of the time
spent waiting to cross this interface. This management is done
by a semaphore. An approximate-timed TLM communication
can transit through the channel only if it can take a semaphore
token. This technique allows to block the initiator thread
of the second request and to continue the simulation. In
addition it allows a correct timing simulation when exploring
hierarchical networks. Indeed, timing is incremented by the
SystemC kernel during the waiting phase and no estimation
is done. With this bridge all networks can be combined in a
hierarchical way to evaluate their benefits and their drawbacks.

B. Synthesis Environment

All basic networks are described in RTL and synthesized
using design compiler [14] from SYNOPSYS. For the mesh
and the torus network, the VHDL codes come from the
NoCem project [15]. The ring and multistage network are
based on modified NoCem router. All synthesis are made
with the TSMC 40nm library [16]. For a hierarchical network,
its estimated area is obtained by adding areas of the basic
networks composing it. As this estimation technique is based
on real synthesis results, it allows realistic comparisons.

Combining these two environments offers to find the best
trade off between performance and area by calculating the
accurate area efficiency of each network. The next section de-
scribes in detail the configuration and parameters of compared
networks.

III. NETWORK DESCRIPTIONS

For the evaluation, 8 different NoC topologies are studied.
This includes 5 well-known basic interconnection topologies
named multibus, ring, multistage, mesh and torus. These
networks have been chosen because they are representative of
the network design space [9]. Hierarchical networks are also
evaluated and 3 of them are proposed: CrossTorus, CrossRing
and Multicross. We chose to compare hierarchic networks
because they present a regular topology and potentially limit
the number of contention like in hierarchical bus. First of all,
we are going to present the basic implemented networks, then
we will describe hierarchical ones.

The multibus is implemented as shown in figure 2-a. In
this network, an initiator drives a unique bus. The network

Fig. 2. (a) Multibus description. (b) Single part of a mesh or torus
network. (c) Multistage description. (d) Part of a ring network.

owns several buses which can be shared or not. So changing
the number of buses modifies the bandwidth. It is possible to
consider only one initiator per bus. In that case, the multibus is
considered as a “fully connected interconnect”. For the rest of
the paper, a multibus will refer to a fully connected network,
i.e. initiators are not connected between them.

The mesh and the torus have the same configuration. One
initiator and one target are linked together with a router as
shown in figure 2-b. The number of columns and rows of the
router matrix can be changed. An XY routing is implemented.
These networks use a wormhole technique to transfer packets
without virtual channels.

The multistage is an indirect fully connected network (Fig.2-
c). It is divided into different stages which are composed of
4-input-output routers. These routers are linked with a butterfly
topology. It also uses a wormhole technique to transfer packets
without virtual channels. The multistage is used in a specific
way, where all initiators are on the same side and all targets
are on the other side. This arrangement simplifies the use
of this network and it corresponds exactly to shared-memory
architectures.

Figure 2-d presents a part of a ring network. In it, one
target and one initiator are bounded to a router. A message
has to cross every router when it transits through a ring. Each
initiator can connect to only one ring. The number of rings
will influence the bandwidth. Each ring is bi-directional. As for
the mesh and torus, it uses a wormhole technique to transfer
packets without virtual channels.

In the case of clustered architectures, each cluster receives
a multibus as an inside-cluster network. To allow extra cluster
communications, initiator ports and slave ports can be used
and reserved on the inside-cluster multibus. We consider
a link between the two network levels like the combining
of an input and an output of the cluster. For each link, a
inter-cluster network is implemented and bridges are placed
between networks. And so, if we consider two links between
two hierarchical levels, this corresponds to two inter-cluster



Fig. 3. Cluster view in a 4 clusters 1 link CrossRing.

Fig. 4. CrossTorus with 9 clusters and 2 links.

networks. This duplication allows to increase the bandwith
and limits contentions between cluster requests. The difference
between hierarchical networks presented in the following
paragraphs is about the inter-cluster network.

The CrossRing is a hierarchical network with a ring as
inter-cluster network. The inter-cluster ring parameters can be
defined as they could be in the non hierarchical case. Figure 3
presents a cluster view of a CrossRing network with one link
between the two network levels.

The CrossTorus links the clusters with a torus inter-cluster
network. Figure 4 shows a 9-cluster CrossTorus network with
two links between the two network levels. As for the Cross-
Ring, the inter-cluster network parameters can be selected.
The CrossRing and the CrossTorus are two-level hierarchical
networks.

The MultiCross implements a particular configuration where
4 clusters are connected around a ring router like on figure 5.
This network offers fast links between a group of 4 clusters
without going through the inter-cluster network. It limits the
number of nodes in the inter-cluster network and therefore
reduces the area. The MultiCross is a 3-level network. The
first one corresponds to a multibus in each cluster. The second
one connects 4 clusters in a group. The last level interconnects
cluster groups. Nonetheless, the MultiCross is implemented by
only two networks. Indeed, the second level network lies in
each ring router. The next section details results from the area
and performance evaluation.

IV. NETWORK EVALUATION

The network evaluation consists of a performance and
an area comparison. In addition, an area efficiency analysis
completes our comparative study. The evaluation platform is

Fig. 5. MultiCross with 16 clusters and 1 link.

composed of 256 processors, represented by traffic generators,
and 256 memories. Even if their number is fixed for each
architecture, the processor clusterization and the number of
links between hierarchical levels can be modified. To sim-
plify the exploration space of hierarchical NoCs, only one
configuration for each topology is explored. We consider 16
clusters of 16 processors for the MultiRing and the MultiTorus
topologies, whereas we focus on 32 clusters of 8 processors
for the MultiCross. Each cluster owns 2 links with the upper
hierarchical level. These configurations are explored in the
next section.

A. Performance Comparison

In this paragraph, we will determine the best performance
network under different traffics. We consider the global latency
of a message as the time between the message creation and
the answer reception in the traffic generator. All considered
latencies on next figures are the mean of 20 simulations with
a minimun of 5000 requests by traffic generators. 1000 warm-
up requests are generated at the beginning of each simulation.
The simulation time depends on the packet injection rate. All
routing algorithms are Deadlock free. All unfinished requests
are not recorded and not taken into account in the calculation.
The mean is computed from all traffic generator results. In our
study, we only consider the MPSoC working area, which is
before the network saturation. A network has a better perfor-
mance if it can handle more network loads before overloading.
For this performance comparison, we use 3 different traffics: a
uniform traffic, a uniform traffic with a percentage of requests
that stay in each cluster, and a normal distribution traffic.

As already explained, the use of a uniform traffic allows
to simulate an unpredictable network load. Figure 6(a) shows
the NoC average latency as a function of the network load.
Because the multibus offers a direct and uniform link to
each memory, it reaches the best performance. Actually, the
more the distance with all memories is heterogeneous and
important, the less the topology is high-performance with a
uniform distribution. Thus, for instance, the torus is better
than the mesh. The multistage owns a uniform 7-hop memory
access, but its links between routers are too long to make this
topology interesting. Besides, as depicted in this figure, the
ring topology cannot reach good results with unpredictable
network loads. Hierarchical networks are not better than a



torus. Their performance is explained by the fact that inter-
cluster communications are penalized by the number of limited
inter-cluster external links. Within hierarchical networks, the
MultiTorus obtains the best performance, since the torus is
well adapted to uniform communications.

If we now consider a uniform traffic with a percentage of
requests that stay in each cluster, the performance of hierarchi-
cal networks increases as shown in figures 6(b) and 6(c). This
parameter changes the repartition of the network load between
local network and intra-cluster network. Non-hierarchical net-
works are not affected by this parameter because they are
not clustered. Hierarchical networks become better than the
mesh with 50% of intra-cluster communications and better
than the torus with 75%. With a rate of 75% of intra-cluster
communications, the MultiTorus becomes even better than
the multibus. This traffic only shows how the locality affects
the hierarchical networks and improves their performance.
If this rate increases enough, they all become better than
the multibus, which is however high performance oriented.
This behavior can be explained by the fact that the multibus
inside the cluster has better performance than the flat multibus.
Indeed, the performance of the multibus is constrained by
its size. Moreover, if communications stay inside a cluster,
there is a smaller chance that contentions occur between
communications.

To correctly estimate the impact of the locality, the com-
parison has to be done with a different traffic. We choose a
traffic under a normal law to represent this phenomenon. We
choose the deviance of normal law at 20. This represents the
number of memories around the transmitter that receive the
majority of the requests. It makes around 80% of memory
access locality for a 256 traffic generator and 256 memory
architecture. Figure 7 shows the average latency as a function
of the network load with a normal distribution and a locality
of 80%. As expected, the multibus is still not affected by
the traffic type and keeps its high performance. Indeed, all
memories are at the same distance for all traffic generators. On
the contrary, a topology, with a non-uniform memory access,
like the mesh is positively impacted, but this increase is limited
by the topology borders. With this traffic, the MultiCross
and the MultiTorus have better performance than the torus.
It confirms that hierarchical networks are better with local
traffics. Hierarchical networks remain less performant than
multibus because the deviance is bigger than the cluster size
and many communications go out of the clusters.

The local traffic could be representative of a real application
behavior executed with a “smart” task allocation. In this case,
hierarchical networks offer good performances and remain
good candidates for a many-core architecture. Nonetheless,
other criteria have to be verified. The next subsection continues
the comparison in term of silicon area.

B. Area Comparison

This subsection focuses on the area, because it is an
important parameter for the design cost of embedded systems.
As already mentioned, the platform is composed of 256

(a)

(b)

(c)

Fig. 6. (a) Average latency of all networks as a function of network
load with a uniform distribution. (b) Average latency of all networks
as a function of network load with a uniform distribution and 50% of
inside-cluster requests for clustered networks. (c) Average latency of
all networks as a function of network load with a uniform distribution
with 75% of inside-cluster requests for clustered networks.

traffic generators and 256 memories. All area results are
obtained, as explained in the second section, by the synthesis
of flat networks and by adding the area of different parts of
hierarchical networks.

The Table I shows the area of the different basic networks
depending on the number of inputs/outputs of the entire



Fig. 7. Average latency of all networks as a function of network
load with a normal distribution and 80% of locality.

TABLE I
AREA ESTIMATION TABLE IN mm2 BASED ON TSMC 40NM LIBRARY. (X

MEANS THAT NO RESULTS CAN BE PRODUCED, BECAUSE OF THE
MULTISTAGE CONFIGURATION)

↓ Networks/Sizes → 8 16 32 64 256
Multibus 0,0193 0,0706 0,247 0,905 17,19

Mesh 0,11 0,235 0,46 0,913 4,24
Torus 0,139 0,258 0,524 1,017 4,337
Ring 0,106 0,196 0,38 0,698 3,030

Multistage X 0,3 X 1,698 9,595

Fig. 8. Evolution of network area in mm2 depending on the number
of input.

network. These results are also used to build area estimation
for hierarchical networks. The symbol “X” means that the
multistage network configuration was not achievable. Indeed,
with a 4-input-output router, the number of inputs has to be
a power of 4. Figure 8 presents the area result table in a
graphical view for a better comprehension. It is important to
mention that the mesh, the torus and the ring have a linear
rising that depends on the network size N. On the contrary,
the multibus has an evolution in N2 and the multistage in
N ∗ log(N).

Fig. 9. Network area in mm2 for 256 inputs/outputs in TSMC
40nm.

Figure 9 references the area of each basic and hierarchical
network for a fixed size of 256 inputs/outputs. The multibus
is the biggest network, followed by the 4-parallel ring and the
multistage. The size of a network depends on the number of
routers and the size of each router. The multibus can be seen as
a single router with 256 inputs and 256 outputs, which explains
its big size. The ring and the multistage also have a big silicon
area because of too many routers. Hierarchical networks in
these configurations are smaller than basic networks. Indeed,
they use a multibus inside the cluster, which is the smallest
network for reduced number of inputs/outputs. In addition,
they limit the number of routers on the inter-cluster network
compared to a non-hierarchical network. For all these configu-
rations, the MultiCross is the smallest network, this is because
it uses the crossbar inside routers as a second hierarchical
level, and takes advantage of the router natural function. This
decreases the area by slightly augmenting the size of each
router instead of multiplying them. The biggest difference is
between the multibus and the MultiCross topologies. Indeed,
the multibus is 17 times bigger than the MultiCross. To be
able to combine these two comparisons, the next subsection
presents the area efficiency as a criterion to conclude this
evaluation.

C. Area efficiency comparison

The last two subsections show an area and performance
comparison. But for embedded systems, it is important to
consider these two criteria together and the area efficiency.
This subsection presents the area efficiency of all presented
networks depending on the traffic. The area efficiency is not
an easy criterion to represent for network. The performance is
compared on the curve latency/network load. So, to introduce
the area mesurement, we propose to normalize the network
load by the size of the network. The new curves allow to
compare normalized performance and so the area efficiency.

Figure 10(a) shows the area normalized network load with a
uniform traffic. In general, hierarchical networks are more area
efficient than non-hierarchical networks, since they can reach a



(a)

(b)

Fig. 10. (a) Average latency of all networks as a function of area
normalized network load with a uniform distribution. (b) Average
latency of all networks as a function of area normalized network
load with a normal distribution and 80% of locality.

high performance with a smaller area. The multibus topology
is the most performant, but with its important generated area,
this topology becomes one of the less area efficient. This
explains why the mesh topology is more used in embedded
architectures than the multibus topology. The MultiTorus is
5 times more efficient than the mesh. Moreover, with an
unpredictable load, it is also the best hierarchical network,
with 33% more area efficient than the MultiRing and 25%
than the MultiCross. The difference of area efficiency between
hierarchical networks with a uniform traffic is explained by
their inter-cluster networks. For example, the torus has a better
area efficiency than the ring. Thus, the MultiTorus is more area
efficient than the MultiRing.

As depicted in figure 10(b), the MultiCross remains the most
area efficient with a normal distribution and 80% of locality.
It is 50% more efficient than the MultiTorus, 10 times more
efficient than the mesh and 7 times more than a torus topology.
Its high area efficiency is due to its structure, which is designed
for intra-cluster and neighboring-cluster communications.

This evaluation shows that hierarchical networks are more
area efficient than non-hierarchical networks for the three
kinds of traffics. The MultiCross remains the best tradeoff if

Fig. 11. Network area in mm2 for 256 inputs/outputs depending
on different hierarchical network configurations in TSMC 40nm
depending on the number of links (2 and 4), and the number of
clusters (16,32,64).

a “smart” dynamic allocation is considered on a many-core
architecture.

V. HIERARCHICAL NETWORK EXPLORATION

In the previous section, we made an arbitrary choice on the
configuration of hierarchical networks. This section explores
different configurations in order to determine the best one. The
problem is to correctly size the number of processors into the
cluster and the number of links between them. Links limit the
number of simultaneous messages. In addition, the more the
number of inside cluster processors increases, the more the
number of simultaneous inter-cluster communications are. We
choose to duplicate the network for each link, although this
choice has a direct impact on the final area. We consider 2 or
4 links, and 16, 32 or 64 clusters. This means that the number
of processors into a cluster is respectively equal to 16, 8 or 4.
Area results are depicted in figure 11.

We still consider the area efficiency as the main comparison
criterion. Figures 12(a), 12(b), 12(c) present the performance
normalized by the area with a uniform distribution and 50%
of inside-cluster communications. The MultiRing has the best
area efficiency for the 16-cluster configuration. This is due to
the high performance of the ring topology for small network
sizes. However, duplicating the inter-cluster network does not
offer enough performance compared to the area increase. The
same conclusion can be derived with the MultiTorus. On the
contrary, the MultiCross divides by 4 the number of routers.
Therefore, it is possible to have more clusters without having
a big area penalty. Like the MultiRing and the MultiTorus, the
performance benefit from duplicating the inter-cluster network
is not enough in comparison with the area increase.

The chosen configurations for the previous comparisons
are the most efficient and this exploration shows that it is
necessary to correctly choose the number of clusters and links
to obtain a good efficiency. If the architecture size changes,
these configurations will not necessary be the best.



(a)

(b)

(c)

Fig. 12. (a) Average latency of a MultiRing as a function of area
normalized network load with a uniform distribution and 50% of
intra-cluster communications. (b) Average latency of a MultiTorus
as a function of area normalized network load with a uniform
distribution and 50% of intra-cluster communications.(c) Average
latency of MultiCross as a function of area normalized network load
with a uniform distribution and 50% of intra-cluster communications.

VI. CONCLUSION

The computational need increases with the development
of new embedded applications. Besides, complex embedded
applications become data-dependent and their execution time
depends on their input data. For this reason, on-line task

and data allocation is needed to optimize the architecture
efficiency. This article deals with the problem of intercon-
necting hundreds of processors and memories in order to
obtain an architecture for a multi-domain context. It focuses
more specifically on the topology of the network-on-chip. The
evaluation was done in terms of silicon area, performance
and area efficiency. The first conclusion is that hierarchical
networks present an area efficient solution. Moreover, the
mesh, which is today a popular topology, has a bad area
efficiency compared to hierarchical networks. The evaluation
shows that the MultiCross has the smallest area and the
MultiTorus is the most performant in hierarchical networks.
The MultiCross presents the best area efficiency with local
traffics, since it allows inexpensive communications between 4
clusters without disturbing other communications in the inter-
cluster ring. The MultiCross is the best topology for a many-
core architecture with a “smart” task and data allocation. The
next step is to evaluate the power consumption which is also
a criterion for embedded systems.

REFERENCES

[1] W. Wolf, A. Jerraya, and G. Martin, “Multiprocessor System-on-Chip
(MPSoC) Technology,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2008.

[2] Semiconductor Industry Association, “International Technology
Roadmap for Semiconductors,” 2008.

[3] W. J. Dally and B. Towles, “Route packets, not wires: on-chip intercon-
nection networks,” in Proceedings of the 38th annual Design Automation
Conference, 2001, pp. 684–689.

[4] N. Bayer and R. Ginosar, “High Flow-Rate Synchronizer/Scheduler
Apparatus And Method For Multiprocessors,” United States Patent, no.
5,202,987, 1993.

[5] Tilera, “http://www.tilera.com/.”
[6] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, P. Dubey, S. Junkins,

A. Lake, R. Cavin, R. Espasa, E. Grochowski, T. Juan, M. Abrash,
J. Sugerman, and P. Hanrahan, “Larrabee: A Many-Core x86 Archi-
tecture for Visual Computing,” IEEE Micro, vol. 29, no. 1, pp. 10–21,
Jan.-Feb. 2009.

[7] W. Dally, “Virtual-channel flow control,” IEEE Transactions on Parallel
and Distributed Systems, vol. 3, no. 2, pp. 194–205, Mar 1992.

[8] J. Hu, U. Y. Ogras, and R. Marculescu, “System-Level Buffer Alloca-
tion for Application-Specific Networks-on-Chip Router Design,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 25, no. 12, pp. 2919–2933, Dec. 2006.

[9] E. Salminen, A. Kulmala, and T. Hamalainen, “On network-on-chip
comparison,” in Proceedings of the 10th Euromicro Conference on
Digital System Design Architectures, Methods and Tools, August 2007,
pp. 503–510.

[10] D. Tutsch and M. Malek, “Comparison of network-on-chip topologies
for multicore systems considering multicast and local traffic,” in Pro-
ceedings of the 2nd International Conference on Simulation Tools and
Techniques, 2009, pp. 1–9.

[11] S. Murali and G. De Micheli, “SUNMAP: a tool for automatic topology
selection and generation for NoCs,” in Proceedings of the 41st Design
Automation Conference, 2004, pp. 914–919.

[12] A. Guerre, N. Ventroux, R. David, and A. Merigot, “Approximate-Timed
Transactional Level Modeling for MPSoC Exploration: A Network-on-
Chip Case Study,” in Proceedings of the 12th Euromicro Conference
on Digital System Design, Architectures, Methods and Tools, 2009, pp.
390–397.

[13] M. Palesi, D. Patti, and F. Fazzino, “Noxim.” [Online]. Available:
http://noxim.sourceforge.net

[14] SYNOPSYS, “http://www.synopsys.com/.”
[15] G. Schelle and D. Grunwald, “Onchip Interconnect Exploration for

Multicore Processors Utilizing FPGAs,” in Proceedings of the 2nd
Workshop on Architecture Research using FPGA Platforms, 2004.

[16] TSMC, “http://www.tsmc.com/.”


