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Abstract—This paper describes the implementation of a real-
time architecture dedicated to obstacle detection in the auto-
motive domain, and more particularly to pre-crash situations.
The method, based on stereovision, is of high complexity and
can not run in real-time on standard processors. Therefore,
the application is accelerated with the use of special purpose
hardware; in particular, a highly parallelized disparity engine
is presented. A prototype board was realized, which achieves
a performance of 460 GOPS and computes the application at
the rate of 22 frames per second, thus reaching road safety
constraints.

I. INTRODUCTION

The Advanced Driver Assistance Systems (ADAS) goal is
to provide more security and comfort for road users. Usual
ADASs comprise driver drowsiness warning, lane departure
detection, road signs identification, vulnerable human (such as
cyclists or pedestrians) detection and avoidance, and at last,
obstacle detection and pre-crash triggering. These applications
are mostly based on image processing using one or several
image sensors: in particular, stereovision allows to extract the
depth of a scene in order to analyze it. Some ADAS methods
are based on the recognition of the scene elements, such as
road signs, pedestrians, or cars. In this article we will only
focus on pre-crash systems that can detect close obstacles at
high speed, without the need of identifying them.

Embedded ADASSs inside vehicles are subject to stringent
constraints, such as safety, robustness, real-time execution
and power consumption. The constraints that we consider in
this article are the real-time execution of an obstacle detection
application: the road security implies a high reactivity, well
under one second, so that brake signals can be sent to
actuators as soon as possible, and a high frame rate of 15 to
30 frames per second.

The next section of this article presents a quick overview of
existing driver assistance systems. In section III the obstacle
detection algorithm is described. Then, section IV discusses
the major processing stages and the resulting partitionning.
The following section V exposes the harware architecture that
will execute this application. The hardware prototype system is
then presented in section VI. Finally in section VII validations
are given.

II. RELATED WORK TO SYSTEMS FOR OBSTACLE
DETECTION

Many systems exist for measuring the depth of a scene,
which are based on radar, ultrasound or time-of-flight. In our
work, we consider only vision based methods for short range
pre-crash applications.

Several processors exist on the market that are dedicated to
automotive applications, such as IMAPCAR[1] and EYEQI[2],
which at the moment do not provide dedicated stereovision
capabilities. IMAPCAR is a SIMD processor running at
100 MHz, composed of 128 processing elements and embeds
300Ko of memory, enough to store a VGA frame (640
columns by 480 lines). A stereovision application has been
ported on an earlier version of this processor, called IMAPVI-
SION [3]: 100ms were necessary to compute the depth map
of regions of 128 by 128 pixels. Concerning EYEQ, a second
version will be available in 2009 that includes a stereovision
engine.

Lots of experiments are conducted for real-time applica-
tions using an embedded hardware running lower complexity
stereovision algorithms, and non real-time applications using
a PC. As an example, [4] is a SIMD implementation of
stereo algorithms using the SIMD capabilities offered by the
multimedia extensions of general purpose processors, such
as the SSE2 instruction set of the Pentium family. Other
prototyping platforms are studied, such as [5], which presents
an architecture for obstacle detection based on stereovision
and the V-disparity algorithm. The platform consists of 30
homogeneous processors (MIPS R3000) in one multicore chip.
Lastly, Deepsea [6] is a processor that can achieve a bandwith
of 200 frames by second on 512 by 480 pixels, using a simple
correlation function.

ITI. OBSTACLE DETECTION ALGORITHM

The image sensors used are automotive grade sensors
ECK100 from Sensata Technologies [7] with progressive scan
and a maximum refresh rate of 30 frames per second (fps).
The sensors output 12 bits grey data or 8 bits color planes at
the VGA resolution. These sensors have a high dynamic range
of 120 dB that allows real road operating conditions, such as
tunnels, night, bright days without saturating the images.



The first part of the algorithm consists of computing,
off-line, an index of rectification, then rectifying input images
on the fly using this index. The rectification is a geometrical
interpolation which results in two images for which the pixels
of a horizontal line are in the same image line, called the
epipolar line.

The second part of the algorithm carries out the disparity
map. The disparity calculation is based on the best matching of
a pixel neighborhood between the reference image (arbitrarily
the left one) and a search zone on the other one (see Figure
1). The search zone on the right image is centered on the
same line, and corresponds to the scan of the correlation
window over a horizontal segment. The length of this segment
is limited by the maximum disparity that is geometrically
possible, 256 in our case. The correlation window is a 7 by
7 pixels kernel; the sizing of this window is mandatory for
the quality of the algorithm and is a compromise between the
computational load, the ability to detect small obstacles and
the precision of the obstacle contouring.
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Figure 1. Principle of the disparity calculation: a point of interest
(here the corner of a box), is searched on the same line into both
images by correlating a 7 by 7 pixels neighborhood. The depth P
is given by calculating B.f/D, f beeing the focus distance and B the
base between the two cameras.

Several correlation methods are used for computing the
dissimilarity score between each pair of windows; the Zero-
mean Sum of Square Differences (or ZSSD), shown in Table
I, was selected for its good balance between computational
load and its robustness to the different illuminances of the two
stereo images. For each pixel (u,v) of the reference window
N(x,y), the mean illuminance from each window (I1 for the left
one and 12 for the right one) is subtracted from the respective
pixel value, then the difference of these two pixels is squared
in order to boost the differences between the windows. All
these values are summed over the window to create the ZSSD
score. Then for each left window, the smallest score (the best
correspondance) out of the 256 computed ones is selected as

the disparity value at this position.

S255D = D (wmen(ay ((11(w,0) = 1) = (I2(u + d,v) — I2))?

Table 1
FORMULA OF THE ZSSD SCORE.

Two enhancement passes are applied in order to get better
results. First, as the correlation method leads to poor results
for low textured regions (lot of errors due to homogeneous
correlation values), a gradient filter is applied on the incoming
images: this filter is a simple edge detector that is not expen-
sive in term of computing power and it stresses the border of
objects or signs on the road.

Secondly, an optional feature of the algorithm is to tilt
the left window by an angle so that inside the window the
road texture is viewed with the same angle from the left
and right cameras. This option allows a better detection
of the road, under the hypothesis that the road is plan;
but for obstacles at the camera height, this correction is
wrong; thus when using this option, the best correlation
score for both the normal and the tilted reference window
must be computed in order to give the disparity at this position.

Finally, the last part of the algorithm is the obstacle de-
tection. This step is performed in a v-disparity space, where
the disparities calculated at the preceding step are cumulated
in a 2D space: the x-axis are the disparity values and the
y-axis are the lines of the source image. In this space (an
example is shown in Figure 2), the road is represented as a
line that can be extracted thanks to a Hough transform [8] or
a Ransac[9]. Any object over the road surface will be seen as
a vertical segment in the v-disparity space, and the crossing
point of this segment and the road line determines precisely the
distance of the targeted object. In the resulted image shown in
Figure 7, the boxes that delimitate the objects are set vertically
thanks to the v-disparity method, and horizontally with the u-
disparity, which is exactly the same method but with the y-axis
representing the columns of the source image. Further details
on this kind of application can be found in [10].

Figure 2. V-disparity space of a road scene: the diagonal bar is the
road representation, and the vertical segments are obstacles.



IV. HW/SW PARTITIONING

Table II shows the profiling result of the obstacle de-
tection application on a standard PC, with a non real-time
performance of two images per second. This algorithm has a
very high level of complexity, thus its implementation on an
embedded system requires a careful study of the computational
needs, in order to accelerate the algorithm and achieve real-
time performance.

Function Time (ms) | Distribution

Rectification 96.0 18.8%
Optical distortion 50.0 9.8%
Image reduction 3.2 0.6%

Movement prediction 0.01 0.001%
Disparity 318.64 62.3%
Moving estimation 1.3 0.25%
Obstacle detection 42.0 8.2%
Total obstacle detection | 511.15 100%

Table IT

OBSTACLE DETECTION APPLICATION PROFILING ON A
PENTIUM4 HT AT 2.4 GHZ.

First of all, the rectification and the optical distortion correc-
tion need floating point arithmetics. Consequently, their hard-
ware acceleration would generate an area-consuming solution.
Moreover, the obstacle detection part of the algorithm is an
irregular processing since it only consists of complex control.
To execute the software part of the algorithm, we looked
for the most powerful floating-point Digital Signal Processor
(DSP) available on the market, which is the TigerSharc ADSP-
TS201S from Analog Device [11]. It can deliver 4800 MMACs
at 600 MHz and has a 24 Mb of internal scrathpad memory.
Moreover, it only needs 4 cycles to access the external mem-
ories, which helps to reduce the usual memory bottleneck in
image processing.

Then, the profiling of the application shows that 62% of the
application time is spent in the computation of the disparity.
While this function is particularly regular, its parallelization
is therefore possible and a specific hardware component must
be designed to accelerate this critical part.

Finally, for the other low-intensive parts of the application,
a hardware acceleration would bring too little benefits and a
programmable processor is consequently the best choice.

The execution time on the TigerSharc processor of the
software parts of the algorithm is presented in Table III. The
rectification and distortion correction stage is accelerated by a
factor of 4 compared to the PC version; the reduction and
prediction stage is slightly accelerated, but is not relevant
because of its small impact; finally the detection stage is not
accelerated and is the limiting factor of the algorithm. Most
important is the fact that these tasks are independant and can
be pipelined over different processors, running in parallel. The
largest stage of the algorithm, named “disparity processing”,
requires specific acceleration that is described in the next
section.

Function Exec. Time (ms)
Rectification & optical distorsion 37
Image reduction & Movement prediction 2
Moving estimation & Obstacle detection 40-45

Table IIT
IMPLEMENTATION RESULTS ON THE TIGERSHARC DSP FOR ONE
IMAGE (LEFT OR RIGHT). THE OBSTACLE DETECTION DOES NOT
TAKE INTO ACCOUNT THE DISPARITY COMPUTATION.

V. DISPARITY PROCESSOR

The disparity function is a very compute-intensive function,
with a simple arithmetic and a regular processing.

A dedicated hardware accelerator is best suited to accelerate
such functions, but as the fabrication of an ASIC component
of 15 Mega-gates is too costly and time-consuming, we
decided to look for the most powerful and complex FPGA
device in the Xilinx reconfigurable family at the moment:
the Xilinx Virtex4 FX140 platform [12] was selected for
its numerous integrated DSP blocks. The largest parallel
architecture that can be synthesized on this FPGA was
evaluated: we found that at most 8 scores can be computed
simultaneously per each pixel of the left image.

The disparity processor can be divided into two parts: the
control and the computation part. The control part selects
the necessary pixels for the computation of the disparity and
manages the whole disparity computation process. As shown
in Figure 3, the control part integrates a bidirectional circular
buffer of 6 lines of pixels in order to maximize the data
locality. To compute 8 scores, we need the selection of 8 right
windows and a left window. The tilt of the left window is
optional and is a parameter of the architecture. Besides, during
the computation of the current line, additional input buffers
are used to enable the load of the next incoming line, and the
means of windows and the gradient are computed along the
next line.

At each cycle, 8 means and gradients are simultaneously
computed in the right image. Because we consider 7 by 7
kernels and that some pixels are common, the control part
provides 14 by 7 pixels, 8 means and 8 gradients to the
computation part at each cycle with 8 cycles latency. Then,
it moves from 8 pixels on the right and provides another set
of values to the computation part. This is repeated 32 times
to process the 256 pixels of the search window. As the search
window length depends on the distance between the current
pixel and the right border of the right image, the control part
automatically computes these border effects and manages the
computation part. Finally, the output memory controller gets
back the computed scores, which manages the minimum of
these scores and applies the gradient selection.

The computation part brings together all of the architec-
ture operators. It mainly computes the previously presented
ZSSD function. The architecture of the left and right mean
computation is fully-parallel and the division by 49 (7 by 7
pixels) is simplified by a multiplication with the value 1337
followed by a 16-bit right shift (actually this is a division by
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Figure 3. Control part of the disparity processor.

49.017, that is to say a 0.03% deviation). Following the ZSSD
formula, these means are substracted from the pixels values,
and the right and left results are again substracted. Then, each
of these 392 results (49 by 8) are squared.

The square operator is obtained by two different techniques.
First, we use 189 embedded DSP blocks (that include fast
multipliers) out of the 192 available into the selected FPGA.
Then, for the 203 remaining square operators, we use another
approach in order to minimize the number of slices. By
exploiting symmetry properties of numerical values and the
incremental computation of squares presented in [13], it is
possible to drastically decrease the hardware cost of a square
operator. The corresponding hardware architecture is derived
from a simple conversion of existing incremental scalar mul-
tipliers. With this approach, our 18-bit square operator needs
only 112slices with a 3 cycles latency, instead of 193 slices
with a parallel multiplier (-42%).

The last step to get the score consists in summing 8
times the 49 squared values (3 cycles latency). Then, these
operations are done 32 times and the 256 scores are compared
together to find the minimum score according to the gradient
values. This last step needs 7 cycles. Finally, the position in
the search window corresponding to this score (the disparity),
the score and the gradient are returned to the control part.

Thus, once the pipeline has been initiated, the architecture
implemented into one FPGA component is able to deliver 8
scores per cycle and therefore a disparity value for each left
pixel in only 32 cycles. For a 640-pixel width or a complete
left pixel line, we need only 18,432 cycles. As shown in Table
IV, because of the very high resource utilization, we used the
Xilinx PlanAhead hierarchical floorplanner and we manually
contributed to the place and route step. In this way, we reached
a 100MHz frequency. Therefore, the time spent to execute a
whole line is about 184 us. To respect real-time conditions,
it is possible to cut the image according to its height and to
implement the architecture as many times as we need. Indeed,
the processing of each line is independent.

In the next section, we will present the whole architecture
that has been implemented to support the application.

Logic Utilization
I/0s 318 (41%)
Slices 53,880 (98%)
Slices FF 73,348 (58%)
4-input LUTs | 87,663 (69%)
DSPs 189 (98%)
RAMB16s 450 (81%)
Table IV

SYNTHESIS RESULT OF THE DISPARITY PROCESSOR (XILINX
VIRTEX 4 FX140-10

VI. ARCHITECTURE DETAILS

The targeted embedded platform for the application is a
stereovision system. We use two logarithmic CMOS cameras
and a synchronization box. We directly use digital output
signals and interface them through an FPGA dedicated to
image adaptation. This FPGA shapes input images to prepare
the rectification. According to Figure 4, the acquired images
are both saved in two output shared memories. Each of the
32-bit memories depicted in this figure is a two-bank dual-
port memory of 512KB. A dual-port memory is used to avoid
conflicting accesses between the input and the output data
flows.
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Figure 4. Synoptic view of our platform

As shown in Table III, even if the chosen DSP is powerful,
the time spent for all this software processing remains
important. However, our final system must reach between
15 and 22 fps with the highest reactivity. The only possible
approach consists in pipelining the application to keep a good
frame rate. In addition, the pipeline length must be as short
as possible to reduce the latency. Hopefully, it is possible
to duplicate the processors to simultaneously process each
software part on the left and right input images. Indeed,
each image processing is independent. Some information
must be shared to validate and synchronize the rectification
or the obstacle detection, but this has a very low inpact on
parallelism.

According to our implementation results on the TigerSharc,
the longest processing stage is the moving estimation with
the obstacle detection. Therefore, the stage length must
be equal to 45ms and our pipeline must consist of three
stages. The first pipeline stage is the rectification, the optical



distorsion, the image reduction and the movement prediction.
The second stage is the disparity, and the third stage carries
out the moving estimation and the obstacle detection. Four
TigerSharc DSPs are used for the first and last pipeline stages.
Because the disparity execution of half an image needs 42 ms
and the disparity for both a normal and a slopped left image
must be computed, we integrated 4 FPGAs for the disparity
computation stage.

Obstacle detection platform board

Figure 5.

In addition, a CAN interface is present to communicate
with the driver and to send the confidence rating of the
information, the number of detected obstacles and their 3D
position. An RS232 serial link is also used as a debug interface
to communicate with a host PC. A debug application has been
carried out under Visual C++ to drive the board and manage
all test and debug protocols. All these interfaces are managed
by an ST microcontroller STR912 based on the ARM9 [14].
Figure 5 shows the board of our complete platform: it is a
14-layer PCB (printed circuit board). The peak performance
of our embedded system is about 460 GOPS and the board
dissipates about 100 W when running the application at full
rate.

VII. VALIDATIONS

As shown in Figure 6, the left and right image rectifications
begin whereas the image acquisition is not yet finished. All
the tasks are activated as soon as input data are sufficient to
begin the process. This is very important because the distance
covered by the vehicle before detecting an obstacle depends
on the latency of the whole processing. In the same manner,
the disparity computation begins as soon as the 7 first lines of
each image are ready.

Finally, the minimum time to get the obstacle information is
about 135 ms (3 successive image acquisitions) i.e. 3.37 meters
at 90 km/h. This represents about 10 times benefit compared to
a human reaction latency. Then, we get an information every
45 ms. A detection result example is depicted in Figure 7: the

wall on the left part which is a close object is not classified as
an obstacle and all cars are identified as obstacles. This result
is robust to various road conditions and illuminations.

Figure 7. Detection result: obstacles on the road surface are identified
into the rectangles

VIII. CONCLUSION

This article presents a prototype system that achieves real
time performance for a high-end obstacle detection applica-
tion. Because of its high complexity, the application was parti-
tionned onto several DSP processors. The disparity calculation,
which is the most critical stage of the application because of
its high computational load, is parallelized into several FPGA
components: a dedicated accelerator was realized to run the
disparity scores.

After the prototype was assembled and debugged, the ob-
stacle detection was validated on the board with various real
road conditions stereo videos; the prototype was also tested
inside parking lots, and we still have to embed it into a
car for demonstration purposes. With the technological nodes
progress, a large Virtex-6 FPGA would be now enough to
handle all the disparity calculation, so that the board would
be simpler and dissipate much less power than the current
implementation.
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