
Relation between HCI-induced performance
degradation and applications in a RISC processor

C. Bertolini, O. Heron, N. Ventroux
CEA, LIST,

PC127, F-91191 Gif-sur-Yvette, France
Email: clement.bertolini@cea.fr

F. Marc
Université Bordeaux I,

351 cours de la Libération
33405 TALENCE cedex, Bordeaux, France

Email: francois.marc@ims-bordeaux.fr

Abstract—Die shrinking combined with the non-ideal scaling of
voltage increases the probability of MOS transistors to encounter
hot carrier injections (HCI). This failure mechanism causes a
performance degradation of digital ICs. The evaluation of timing
degradations becomes a must-have to ensure the expected time-
to-market and IC lifetime early in the design flow. In this paper,
we present a design/verification flow at front-end from which we
accurately analyze the impact of instruction-set architecture on
processor timings. We show results on a RISC processor named
AntX and designed in a 40 nm TSMC technology. Using typical-
case scenarios can increase the maximum operating frequency
by 15 % on average compared to a worst-case scenario, while
considering the same lifetime. We also identify that the shift
operations cause the highest timing degradations along the long
processor paths.

I. INTRODUCTION

Die shrinking leads to faster devices and higher number of
transistors per area but less reliable devices. The non-ideal
scaling of voltage in VLSI significantly affects the transistor
reliability. One of the major problem is the electric field
over-stress that is experienced by the thin gate dielectric of
MOS transistors. This negative trend increases the probability
of injection of electrons from the drain pin into the gate
oxide. This phenomenon, called hot carrier injection [1],
results in a drift of the transistor threshold voltage that results
in a loss of performance. To keep the reliability constant of
the whole integrated circuit (IC), the failure rate per transistor
must decrease as transistor density increases at each shrinking
step [2].

Today, the design flow includes a sign-off step before
design tape-out. Reliability is now part of design requirements.
Existing commercial and academic simulation tools provide
a solution to evaluate the performance drift due to HCI at
transistor and layout levels, such as [3] and [4]. Because
these State-of-the-Art tools rely on a transistor-level ageing
model and simulation, they are not a sufficient answer to the
verification of complex SoCs such that many-core systems:
too long simulation time and too high analysis effort by
designer. Other approaches propose a verification flow to
analyze the effects of HCI on circuit timings at gate level
(design netlist), such as [5][6][7][8].

At this abstraction level, the analysis consists in calculating

the new gate timings induced by a worst case activity of
all transistors. One benefit of this approach is the ability
to predict the maximum frequency of the circuit while
accounting on HCI effects and others. In order to prevent
timing violations during the lifetime, the clock frequency of
the IC is set to a value lower than the theoretical one (guard
band) so as the expected processor lifetime is guaranteed.
In a worst case scenario, the sequence of stimuli applied to
circuit inputs often activates a non-functional state, such as
test vectors obtained with an automatic test pattern generator
(ATPG). However, each individual transistor is stressed
depending on the IC usage by the user. Hence, their amount
of degradation can be lower than the one predicted in a worst
case scenario.

Relatively to RISC processor designs, our idea is to
evaluate the real degradation of the processor performance
at gate-level by considering the functionality of the circuit,
already known at design time. It is possible to analyze the
impact of the instruction set architecture (ISA) on HCI
and thus identify which instruction will cause the highest
degradation in the processor. A first benefit is to prevent
an over-estimation of performance degradation due to HCI
that leads to a too much conservative design. A second
benefit is the ability to identify more accurately which part
of the processor microarchitecture is the most sensitive to
HCI effects and for which instruction set. By this way,
the designer from integrated design manufacturer (IDM) or
fabless can obtain a more accurate estimation of HCI effects
on processor performance early at the front-end of the design
flow. This will open the way to apply design optimization
at architecture-level such as [9] and [10]. The novelty of
this paper is not to build an HCI-aware verification flow
at gate-level, but rather to exploit the capabilities of such
flow to make the bridge between the processor functionality
and structure for analyzing HCI effects. To the best of
our knowledge, there is no study that links HCI-induced
performance degradation and the ISA of a processor.

Our analysis framework is similar to those proposed
in [5], [10] and [6]. New capabilities are inserted in a
verification flow. A performance simulation tool is coupled to
a proprietary tool that is able to evaluate the amount of timing

degradation of each logic gate of a design. The simulation
tools provide the bit toggling activity of each logic gate input.
A static timing analyzer provides a report of the path timings.
For a given program, the new flow reports the propagation
delay of all processor paths and identifies the longest paths,
after simulation. To reach this objective, we derive a timing
degradation model of a logic gate, based on the knowledge
of HCI physics and State-of-the-Art transistor-level models.
The model is parameterized by the bit toggling activity of
gate inputs. It is important to notice that this approach is
easily adaptable to new technology nodes and compatible
with any gate-level design tools. Moreover, the methodology
we propose could be extended to Bias-Temperature-Instability
(BTI) failure mechanism that relies on a timing degradation
model similar to HCI one [5]. The difference is that BTI
activation is rather related to the signal probability of logic
gate inputs instead of bit toggling activity.

In this paper, we propose three main contributions:
• We show that the worst case scenario is 15 % more

pessimistic on performance degradation than a typical
case one and leads to a wrong identification of the weakest
microarchitecture module.

• We show that the path timings can vary about 7 %
depending on the executed instructions and data.

• We identify that the arithmetic instructions related to
ALU shift unit cause the highest degradation.

Background about HCI physics and modeling is discussed in
Section II. Section III presents our timing degradation models
of a logic gate and path. In Section IV, a RISC embedded
processor called AntX, and the augmented verification flow
are described. Finally, section V presents the analysis results
and discusses on the impact of applications on HCI behavior.
Section VI concludes the paper.

II. BACKGROUND

The investigation of HCI at design level requires models
that represent the behavior of the failure mechanism regarding
the given electrical and design parameters. The models are
used to evaluate the amount of degradations of some
monitored circuit parameters. Drain current degradations at
transistor level, or propagation delay of NAND at logic gate
level, are some of these parameters. Ageing modeling and
simulation are still an intensive research field. However, there
is a consensus on the modeling and simulation methodology.
It follows a bottom-up approach which aims at propagating
upwards into the design flow hierarchy accurate information
about the reliability physics [5]. An aged model is associated
to each individual primitive of the hierarchy.

HCI is a phenomenon that occurs in MOS transistors.
Due to the short channel length, the electric field of the
channel becomes very high. HCI is due to the ionization
caused by the electron impacts on silicon atoms at the drain,
when a current flows through the transistor channel [1].

Fig. 1. Example of a timing arc in a 2-input NAND gate

Some of the hot carriers are captured in the transistor gate
Si-SiO2 interface, forming a space charge and modifiying the
conductive properties of the interface. Over a period of time,
this causes a shift or a degradation of drain current, threshold
voltage, and transconductance.

At transistor level, most of models are semi-empirical and
are based on experimental characterizations of failure physics
in the device under high operating levels. Takeda et al. [11]
proposed an empirical model based on a worst case transistor
biasing. The model represents the amount of degradation of
threshold voltage Vth with respect of the stress time t.

∆Vth = A · tn (1)

where A and n are constant values derived from manufac-
turer technology and t is the stress time of the transistor i.e.
the time during which the transistor is under HCI condition. A
depends on drain voltage only. The models suggests that the
parameter degradation is a power law with the stress time. The
stress time depends on the transistor usage i.e. the total time
a current flows through the channel during the experiment.
In this work, we adopt this simple model to setup a timing
degradation model.

III. TIMING DEGRADATION MODEL

Each logic gate is characterized by a set of timing arcs
between one input and its output, as shown in Figure 1. Each
timing arc represents the possible propagation delay from
a single rising/falling transition through the logic gate, e.g.
tA−>Z .

For the reader convenience, we will consider in the follow-
ing demonstration that the propagation delay of a logic gate
refers to only one timing arc. The result can be easily extended
to all timing arcs of a logic gate. In this work, the propagation
delay of a logic gate under HCI stress condition is represented
by the following analytical model, as proposed in [6]:

daged = d0 +∆d (2)

Where d0 is the static or fresh propagation delay, daged is
the aged delay and ∆d represents the timing increase due to
HCI or delay degradation. The last term displays the effects
of HCI on the internal transistor(s) of the logic gate flowed by
a current i.e. when the output switches. This study considers
a power law dependency between the delay degradation and
the transistor stress time. We refer to the degradation model
proposed in [5], which was validated on silicon. Temperature
gradients are not yet taken into account. Hence, the delay

degradation has a direct dependency with the Vth shift of the
transistor (Eq. 1), as follows:

∆d = B · tn (3)

where B and n are constant values derived from
manufacturer technology and t is the stress time of the
transistor. B depends on drain voltage.

An internal transistor is under HCI stress condition when
a current flows through its channel. In a CMOS technology,
this condition depends on the input toggling activity and the
internal transistor topology. The stress time of a timing arc
can be expressed as follows:

t = θ ·TC (4)

Where θ is the time spent by the current to flow through
the transistor i.e. when the logic gate output switches. TC
corresponds to the number of times the gate input switches
(the stress condition is verified). For a given period of
operation, the value of TC is incremented whenever a current
flows through a transistor. The determination of this variable
will be explained in Section IV.

By combining the three previous equations, the propagation
delay of a logic gate can be expressed as follows:

daged = d0 +C ·TCn (5)

Where C is a constant equal to B ·θ n.

At circuit level, a combinational path is formed by m logic
gates g0, ...,gi, ...,gm−1 between two registers of an integrated
circuit. Whatever is the timing path, it exists an input vector
that allows the propagation of a transition on this path until its
output. The aged propagation delay of the timing path d paged is
the sum of the aged propagation delay daged of the logic gates
that form this timing path. It can be expressed as follows:

d paged = ∑
gi

daged(i) (6)

Where daged(i) is the aged propagation delay of the logic
gate gi. By combining Eq. 5 and Eq. 6, the propagation delay
can be expressed as follows:

d paged = d p0 +C · ∑
gi

(TC(i))n (7)

Where d p0 is the fresh propagation delay of the timing
path. The term ∑

gi

(TC(i))n will refer to the path toggling

count in the following sections. The path toggling count is
the total number of times the stress condition of all path gates
is verified. It is important to note that this term depends on
the circuit usage and in particular on the executed program
in a processor design.

In the next section, we present an experiment framework
that enables the evaluation of timing degradations in a pro-
cessor design. The timing degradation models derived in
this section (Eq. 5 and Eq. 7) will be implemented in this
framework.

IV. DESIGN AND SIMULATION FRAMEWORK

To evaluate HCI degradations, we use a processor core
named AntX [12]. AntX is a scalar, 5-stage pipeline, and
monothreaded RISC core designed at CEA LIST. It is a
32-bit architecture specifically designed to be used as a
low-cost control core in an MPSoC environment. Therefore,
there are no complex units such as a branch predictor, a
FPU, or a multiplier. Its register file is composed of 16 32-bit
registers. The AntX processor has been developed in VHDL
and synthesized in 40 nm low-power TSMC technology using
Design Compiler tool (Synopsys) [13] at 200 MHz (VDD=
1.1 V and T= 25 ◦C). The overall core area is 10,265 µm2,
which is about 7.24 kilogates. AntX comes along with a
dedicated GNU toolchain. To perform its evaluation, the core
has been connected to a single external memory to store both
instructions and data.

To perform our analysis, a collection of typical application
kernels usually found in embedded systems are used. The
collection includes: bitcount, basicmath, crc and fft from
MiBench embedded benchmark suite [14], a bubble sorting
algorithm sort, a finite impulse response filter fir, and a motion
estimation algorithm described in [15] and named motion in
this paper. Figure 2 shows the number of instructions executed
by each application kernel. To simplify our analysis, we
only consider instructions executed during the shortest bench
execution time. Hence, all benches have the same overall
execution time, and approximately have the same number of
instructions. The figure discriminates arithmetic instructions
(ALU) to non-arithmetic ones (e.g. load operations). The
ALU instructions are subdivided into 4 categories: addition
(add), substraction (sub), Boolean operations (logic) and shift
operations (shift). It points out that some of applications, like
bitcount, use much more arithmetic instructions (especially
add and shift operations), compare to the motion application
for instance. This obervation will be used to explain some of
our results in the next section.

The analysis of performance degradations is performed with
the aid of the design/verification flow pointed out in Figure
3. It allows a designer to get timing reports at logic gate
and path levels. First of all, the RTL description of processor
design is synthesized at logic gate level using the TSMC 40 nm
technology library. Then, the collection of application kernels
is executed on the design netlist with the aid of Modelsim
simulation environment (Mentor Graphics) [16]. Primetime
tool (Synopsys) [17] is next used to generate both static
timing and net activity reports of the timing paths. Here, the
propagation delay along the circuit nets is not considered.
We implement a proprietary tool, named Cell Delay Updater,

1 500

2 000

Nr. of instructions

non ALU

sub

500

1 000

1 500 sub

add

logic

0

500

shift

Fig. 2. Number of arithmetic instructions executed by the selected kernel
applications

that computes the value of every timing arc of every logic
gate at each simulation step of Primetime tool. This tool gets
the toggling activity on every net. As mentioned in Section
III, the timing arc affected by HCI depends on the toggling
input condition and internal topology of transistors. Our tool
increments the value of all timing arcs of logic gates, according
to Eq. 5, whenever a logic gate input switches. Actually, the
amount of degradation would depend on the gate load (factor
B in Eq. . Hence, the term TC accounts for the toggling count
of the logic gate inputs. Finally, Primetime tool is used again
to get the reports of aged circuit timings. To simplify this
preliminary analysis, the internal topology is not considered.
All timing arcs rely on an identical degradation that remains
constant over time. Some past related works, such as [5], will
aid to relax this limitation in future. The factor C is equal to
232 ·10−6ns so as the longest propagation delay will increase
by 50% at the end of simulation of our shortest application.
The factor n is usually equal to 0.5.

Fig. 3. Design and verification flow used to compute the circuit timings
under HCI stress conditions

V. RESULTS

This section presents the result of the timing analysis of
AntX processor design under HCI stress condition. A first
static timing analysis (STA) is performed to get the list of
paths and their fresh propagation delay. The total number of
paths is equal to 238. The critical path under fresh conditions
(no HCI stress) has a propagation delay equal to 4.54 ns.
This path will be called fresh longest path. A second timing
analysis is performed with the aged propagation delays of
logic gates, using our proprietary tool. As mentioned in
the previous section, the amount of degradation depends on
the bit toggling activity on the logic gate inputs (TC) and
simulation time (Ts). The simulation time is a constant in all
experiments (Ts =17133 ns) and corresponds to the shortest
execution time among executed benches. Two scenarios of
bit toggling activity are considered in this paper. The first
one, named worst case scenario, assumes that every logic
gate input toggles at each processor clock cycle. Here, the
bit toggling is generated by our proprietary tool. The second
one, called typical case scenario, considers that bit toggling
activity is controlled by executed application kernels (Fig.
2). These seven typical case scenarios have been presented
in the previous section. In all scenarios, the clock frequency
remains constant at 200 MHz.

Figure 4.a shows the distribution of fresh path slack times
of AntX processor as histogram bars. The x-axis is subdivided
into 100 ranges of values. The mean path slack time is equal
to 1.57 ns. Figure 4.b compares the path slack times between
fresh and stress conditions in an XY-Graph. Stress conditions
are performed by running the worst case scenario. The
mean value is now equal to -1.1 ns, hence a shift of -170 %
compared to fresh conditions. This scenario results in 157
violations of setup time (slack time< 0). According to Eq. 7,
the aged propagation delay of these paths exceeds the clock
period minus the latch setup time.

Figures 5.a and 5.b show the same type of comparison of
path slack times. Stress conditions are obtained by running
respectively bitcount and motion. In both cases, 83 paths
violate the setup time. In bitcount case, the mean value is
equal to -0.28 ns, i.e. a shift of -117 % compared to fresh
conditions. In motion case, the mean value is equal to
0.08 ns, i.e. a shift of -94 % compared to fresh conditions.
It is interesting to notice that both applications generate an
identical number of timing violations. But bitcount causes
a higher degradation of slack time. As shown in Figure 2,
bitcount is the application that executes the highest number
of ALU Shift operations while motion executes the lowest
ones. As detailed later, the pipeline stage Execute of AntX
processor contains the longest paths, i.e. the highest value
d p0. The application kernel that executes the highest number
of ALU Shift operations will cause the highest path toggling
count (Eq. 7).

a)
60

30

40

50

60

N
u

m
b

e
r

o
f

p
a

th
s Fresh

Histogram

mean

0

10

20

-6,5 -5,5 -4,5 -3,5 -2,5 -1,5 -0,5 0,5 1,5 2,5 3,5 4,5

N
u

m
b

e
r

o
f

p
a

th
s

Slack time of paths (ns)
0

b)

1,5

2

2,5

3

3,5

4

4,5

F
re

sh
 s

la
ck

 t
im

e
 (

n
s)

Worst Case

0

0,5

1

-6,5 -5,5 -4,5 -3,5 -2,5 -1,5 -0,5 0,5 1,5 2,5 3,5 4,5

F
re

sh
 s

la
ck

 t
im

e
 (

n
s)

Aged slack time (ns)

Fig. 4. a) Histogram bars of path slack time of AntX processor under fresh
conditions and (b) XY-Graph of path slack time between fresh conditions and
worst case scenario

Table I reports the aged propagation delays and the relative
degradation of the maximum frequency of the processor
for both typical and worst case scenarios. The first column
shows the simulated scenario. The second column shows
the propagation delay of the longest path after running the
scenario. The longest path is identified by running an STA.
The third column reports the propagation delay of the fresh
longest path. A first remark is that the longest path after HCI
stress conditions is not the fresh longest path in all scenarios
even if the propagation delay of this path is also degraded.
Hence, the fresh longest path is not a good monitor of circuit
ageing under HCI stress condition.

Let’s now discuss on the worst case approach impact on the
prediction of maximum operating frequency (FMAX) of AntX
processor. The relative variation of the maximum operating
frequency is shown in the third column of Table I. The
reference corresponds to the maximum operating frequency
of the fresh longest path (1/4.54ns). In the typical case
scenarios, the maximum operating frequency decreases from
-41 % to -48 % depending on the executed application kernel.
In the worst case scenario, the maximum operating frequency
decreases of -60 %. Therefore, an STA based on worst case
scenario would lead to a conservative design and hence, the
maximum operating frequency of AntX processor would be
under-estimated of 15 % in average.

Figure 6 shows the variation of the slack time of the

a)

1,5

2

2,5

3

3,5

4

4,5

F
re

sh
 s

la
ck

 t
im

e
 (

n
s)

Bitcount

0

0,5

1

-6,5 -5,5 -4,5 -3,5 -2,5 -1,5 -0,5 0,5 1,5 2,5 3,5 4,5

F
re

sh
 s

la
ck

 t
im

e
 (

n
s)

Aged slack time (ns)

b)

1,5

2

2,5

3

3,5

4

4,5

F
re

sh
 s

la
ck

 t
im

e
 (

n
s)

Motion

0

0,5

1

1,5

-6,5 -5,5 -4,5 -3,5 -2,5 -1,5 -0,5 0,5 1,5 2,5 3,5 4,5

F
re

sh
 s

la
ck

 t
im

e
 (

n
s)

Aged slack time (ns)

Fig. 5. XY-Graph of path slack time of AntX processor after running (a)
bitcount and (b) motion kernel applications

90 longest paths of AntX processor for both typical case
and worst case scenarios. We observed that the variation of
their slack time is superior to any other processor paths.
These paths belong to the execute pipeline stage of the AntX
processor. The path with the lowest rank value (x-axis) is
the path with the lowest slack time, i.e. the longest path. We
also plot the fresh slack time of these paths. For the reader
convenience, the paths are grouped into 8 groups denoted as
A, B, ..., H. Groups A to F refer to a single path. They are
located in the module that manages the control bits of the
pipeline (overflow, carry, etc.). Groups G and H refer to a set
of paths. The paths belonging to group G are the result bus
of the ALU. The paths located in group H are located in the
module that computes the memory address.

Scenarios
d paged (ns)
longest path

d paged (ns)
fresh longest path

%∆FMAX

basicmath 8.30 6.24 -45
bitcount 8.72 6.86 -48
crc 8.62 6.91 -47
fft 8.45 6.35 -46
fir 7.95 6.24 -43
motion 7.74 5.88 -41
sort 8.59 5.93 -47
worst case 11.31 11.03 -60

TABLE I
VARIATIONS OF PROPAGATION DELAYS AND MAXIMUM FREQUENCY OF

ANTX PROCESSOR FOR TYPICAL AND WORST CASE SCENARIOS

-10

-8

-6

-4

-2

 0

 2

 4

 0 10 20 30 40 50 60 70

S
la

c
k

 t
im

e
 (

n
s)

Path rank

A
B
C
D
E
F

G H

Fresh
sort

bitcount
crc

basicmath
fft

motion
fir

Worst case

Fig. 6. Variation of slack time of the 68 longest paths of AntX processor
for both scenarios

As pointed out by Figure 6, the timing of groups A to F
are the most degraded in the worst case scenario. This is due
to the fact that the paths with the highest number of lagic
gates lead to the highest path toggling count. On the contrary,
the timing of groups G to H are the most degraded when
considering typical case scenarios. Hence, the worst case
approach cannot help in identifying the weak processor design
part, i.e. modules that are the most sensitive to HCI stress.
In both scenarios, the related weak modules are different
and hence will require different mitigation techniques for HCI.

Let’s now focus on the typical case scenarios. The groups G
and H contain the weakest paths among the seven applications
kernels. As already mentioned, the application bitcount causes
the highest variation of slack time while motion causes the
lowest variation. By comparing this result with Figure 2, it
is interesting to notice that the application which executes
the highest number of shift operations causes the largest
variation in the slack time and vice-versa. It means that these
instructions lead to the highest path toggling count along the
long paths. In our AntX processor, these paths are formed by
the logic gates located in the ALU used to control the result
bus, and those used for memory address computation.

Let’s now discuss about this last observation. The result
points at which part of the processor is the most prone
to HCI and for which instruction. The user could next
build a program that executes various shift operations with
different operands selected randomly. By executing this
program during a certain time, the designer can obtain
the highest variation of ∆FMAX . As an example; a drift
of 32% after a stress time equal to 1ms and a model
configuration (C = 232,n = 0.5). According to the target
technology, the real model configuration (C,n) could be
obtained and the estimated drift could be extrapolated to the
mission duration, e.g. a drift of 9% after a stress time of 2
years. Finally, the designer can decide to optimize or not the
design if the drift exceeds the threshold expected after 2 years.

VI. CONCLUSION

This paper presented the first study that correlates the
HCI-induced performance degradations in a RISC processor
with ISA, at front-end design flow. We augmented a de-
sign/verification flow so as the new flow is able to evaluate the
path timings of the design netlist according to the bit toggling
activity and HCI effects. We derived a timing degradation
model of a logic gate due to HCI from the literature. This
flow can be easily adapted to other timing degradation models
of a logic gate, such as BTI and technology libraries. We
showed that a worst case approach leads to over-estimate
the performance degradation by 15 % compared to a typical
scenario. We finally identified that the shift operation causes
the highest timing degradation along the related AntX paths.
This observation will aid the designer to write a reference
application that would lead to evaluate more accurately the
∆FMAX shift.

REFERENCES

[1] JEDEC, Failure Mechanisms and Models for Semiconductor Devices,
JEDEC Solid State Technology Association, November 2010.

[2] ITRS, Process Integration, Devices, and Structures, International Tech-
nology Roadmap for Semiconductors, 2010.

[3] R. Tu, E. Rosenbaum, W. Chan, C. Li, E. Minami, K. Quader, P. Ko,
and C. Hu, “Berkeley reliability tools-bert,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 12, no. 10,
pp. 1524 –1534, oct 1993.

[4] P. Lee, M. Kuo, K. Seki, P. Lo, and C. Hu, “Circuit aging simulator
(cas),” in Electron Devices Meeting, 1988. IEDM ’88. Technical Digest.,
International, 1988, pp. 134 –137.

[5] V. Huard, N. Ruiz, F. Cacho, and E. Pion, “A bottom-up approach
for system-on-chip reliability,” Microelectronics Reliability, vol. 51, pp.
1425 – 1439, 2011.

[6] D. Lorenz, M. Barke, and U. Schlichtmann, “Aging analysis at gate and
macro cell level,” in Computer-Aided Design (ICCAD), 2010 IEEE/ACM
International Conference on, nov. 2010, pp. 77 –84.

[7] Y. Kawakami, J. Fang, H. Yonezawa, N. Iwanishi, L. Wu, A. I-
Hsien Chen, N. Koike, P. Chen, C.-S. Yeh, and Z. Liu, “Gate-level aged
timing simulation methodology for hot-carrier reliability assurance,” in
Design Automation Conference, 2000. Proceedings of the ASP-DAC
2000. Asia and South Pacific, june 2000, pp. 289 –294.

[8] L. Wu, J. Fang, H. Yonezawa, Y. Kawakami, N. Iwanishi, H. Yan,
P. Chen, A. I.-H. Chen, N. Koike, Y. Okamoto, C.-S. Yeh, and Z. Liu,
“Glacier: a hot carrier gate level circuit characterization and simulation
system for vlsi design,” in Quality Electronic Design, 2000. ISQED
2000. Proceedings. IEEE 2000 First International Symposium on, 2000,
pp. 73 –79.

[9] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “Lifetime reliability:
Toward an architectural solution,” IEEE Micro, vol. May-Jun, pp. 70–80,
2005.

[10] F. Firouzi, S. Kiamehr, and M. Tahoori, “Nbti mitigation by optimized
nop assignment and insertion,” DATE’12, 2012.

[11] E. Takeda and N. Suzuki, “An empirical model for device degradation
due to hot-carrier injection,” Electron Device Letters, IEEE, vol. 4, no. 4,
pp. 111 – 113, apr 1983.

[12] C. Bechara, A. Berhault, N. Ventroux, S. Chevobbe, Y. Lhuillier,
R. David, and D. Etiemble, “A small footprint interleaved multithreaded
processor for embedded systems,” Beirut, Lebanon, dec. 2011.

[13] Synopsys, “Design compiler 2009.06-sp1.”
[14] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and

R. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop on, dec. 2001, pp. 3 – 14.

[15] L.-M. Po and W.-C. Ma, “A novel four-step search algorithm for fast
block motion estimation,” Circuits and Systems for Video Technology,
IEEE Transactions on, vol. 6, no. 3, pp. 313 –317, jun 1996.

[16] http://www.model.com/, “Modelsim 6.5b.”
[17] Synopsys, “Primetime px 2008.12.”

