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ABSTRACT 

 Advances in DSM technologies have a negative impact on 
yield and reliability of digital circuits. On-line self-testing is an 
interesting solution for detecting permanent and intermittent 
faults in non safety critical and real-time embedded 
multiprocessors. In this paper, we describe and evaluate three 
scheduling and allocation policies for on-line self-testing. We 
show that a policy that periodically applies a test procedure to 
the different processors in a way that considers idle times, test 
history of processors and task priorities offers a good trade-off 
between performance and fault detection probability.  

1. INTRODUCTION  

ITRS Roadmap [1] predicts that integrated circuits (IC) 
reliability will become a critical task for semiconductor 
industry in Deep Sub-Micron (DSM) technologies (sub-
45nm). Reliability is defined as the ability of an IC to work 
without a failure and within given performance limits for a 
specified time and environment [2]. New materials and 
smaller devices provide benefits for performance, power 
consumption and transistor density but have a negative 
impact on yield and reliability. Many billions of transistors 
in ICs will be unusable due to extreme static variations. ICs 
will also encounter frequent intermittent errors due to their 
increasing sensitivity to external neutrons, alpha particles, 
transient voltage variations (such as IR drop) and junction 
temperature variations (such as thermal hotspots) [3][4][5]. 
Transistors, vias / contacts and wires will age and degrade 
faster over time, causing intermittent errors due to the 
parameter variations and even more permanent errors [6], 
thus shortening IC lifetime. For all the above reasons, 
reliability becomes a key issue in architecture design. 

Design techniques using fault tolerance concepts help to 
overcome yield and reliability related errors in digital IC. A 
fault-tolerant IC may go through one or more of the 
following stages: error masking, error detection, error 
correction / containment, IC repair / reconfiguration, and IC 
recovery [7]. Several fault tolerance techniques for 
multiprocessors were proposed in the past, such as [8][9]. 
Most of these solutions do not address explicitly error 
detection; they rather focus on the recovery procedure. In 

addition, most of them are not suitable for our purpose that 
concerns non-safety critical and real-time applications such 
as Media and Telecommunication in embedded 
multiprocessors. In this context, the multiprocessors rather 
integrate hundreds of RISC processors that have a less 
complex micro-architecture (scalar pipeline and non-
multithreading support). All the processor cores are 
occupied by a SW task most of the time (no spare) therefore 
optimizing performance and power efficiencies (mW/um2 
and Gops/s/um2). 

The design of a cost-effective error detection solution for 
embedded multiprocessors still appears to be an open 
problem and hence a critical focus in DSM technologies. 
Some past works focused on the on-line error detection 
problem in single RISC processors. “Razor” [10] allows 
detecting and recovering from delay errors, with the aid of 
special pipeline latches. “Diva” [11] and “Argus” [12] 
integrate checkers in the micro-architecture for detecting 
control and data flow errors. The “Bulletproof pipeline” 
[13] inserts BIST modules for testing faults in the pipeline 
stages during stall times. These solutions prevent from 
committing most or all errors but to the detriment of micro-
architecture design effort, area and power consumption 
overheads. 

Real-time and non safety critical applications do not need 
on-line error detection solutions that would track HW errors 
cycle by cycle in the most aggressive scenario. Conversely, 
if an active error escapes from the faulty resource and 
propagates through the architecture, then it may not always 
cause a fatal multiprocessor failure. Such applications can 
naturally tolerate the occurrence and propagation of one or 
more undetected errors, such as infrequent computing 
errors. Depending on the expected reliability level, the 
circuit may only be checked at boot time and sometimes 
during the execution. A boot checking mainly addresses 
permanent errors while a checking during execution can 
also detect intermittent errors that can cause bursts of 
computing errors or fatal errors (e.g. program counter errors 
in a processor). 

As an alternative to the solutions listed above, on-line self-
testing seems to be an interesting candidate that can fit well 
with our error detection requirements. Test is a common 
technique used for detecting faults in IC [20]. It is generally 



applied during manufacturing process (offline testing), at 
boot time or periodically during the IC lifetime. For the last 
case, we talk about on-line self-testing for which the test is 
automatically applied by the circuit itself [18]. This 
approach requires a lower design effort, induces lower area 
and power consumption overheads and can detect several 
fault models with a high coverage, but in detriment of error 
detection latency [16]. Under test mode, the circuit is 
configured in a way where the resources under test are 
logically isolated from the rest of the system. When the test 
is performed concurrently with the application, the latter 
should continue its execution on the remaining resources. 
The control part of a multiprocessor architecture should be 
able to dispatch task applications and tests over the 
architecture in a way that minimizes the performance 
penalties and maximizes the test efficiency.  

In this paper, we explain how on-line self-testing can be 
integrated in an embedded multiprocessor architecture and 
we describe three possible self-test scheduling and 
allocation policies for detecting intermittent and permanent 
faults. With the help of simulation, we evaluate the impact 
of these policies on performance and fault detection 
probability in an asymmetric multiprocessor. 

The paper is organized as follows. In Section 2, we 
motivate our approach. In Section 3, we describe the 
principles of on-line self-testing in an embedded 
multiprocessor. In Section 4, we detail a self-test 
configuration. Section 5 describes three self-test policies. 
Section 6 presents the results about performance and fault 
detection probability for an asymmetric architecture. 
Finally, Section 7 concludes the paper. 

2. MOTIVATIONS 

In a multiprocessor context, on-line self-testing consists in 
testing frequently a sub-part of the architecture while the 
rest of the resources still run the jobs, concurrently. Li and 
al. [16] propose a solution for detecting stuck-at and delay 
faults in OpenSPARC T1 multiprocessor. High quality test 
patterns are generated (offline) and stored in an external 
non volatile memory. An HW support automatically loads 
and applies the test patterns to every core periodically while 
others remain in a normal mode. In addition, the proposed 
solution enables the prediction and diagnosis of such “hard” 
failures. One limitation the solution is that they do not 
address explicitly the scheduling and allocation problems 
for decreasing the performance and power penalties 
induced by the test. In [17], authors reserve a spare 
processor for test purpose so as, when the operating system 
activates a test session on a processor that is running a task, 
the task is preempted and migrated to the spare processor. 
This solution can reduce the performance penalty 
depending on the preemption and migration costs but to the 

detriment of performance and power efficiencies. In a 
general way, most of papers address the integration and 
application problems of the on-line self-testing. To our 
knowledge, there are no papers that address explicitly the 
questions: at which rate the test should be applied? And 
which processor is chosen at each test time? In this paper, 
we focus on the configuration and scheduling and allocation 
policies for on-line self-testing in real-time embedded 
multiprocessors. 

The design of an optimal on-line self-testing technique for 
embedded multiprocessors should offer a good trade-off 
between fault coverage, fault detection probability, HW 
design effort and performance and power consumption 
overheads. Fault coverage is the number of faults that a 
given test pattern sequence can detect among the total 
number of possible faults, for different fault models [20]. 
High fault coverage for several fault models increases the 
likelihood for detecting a multiprocessor failure, but results 
in a long test pattern sequences. On-line self-testing should 
address both permanent and intermittent faults. While 
permanent faults are mainly due to aging phenomenon such 
as NBTI, HCI, TDDB, etc. [14], intermittent or temporary 
faults are more complex failure modes. Such faults are 
caused by the extreme variation of timing margins of long 
paths above the limit thus causing a timing violation of the 
register setup and hold times [3][4][15]. In very DSM 
technology, the root cause may be due to a transient 
variation of the junction temperature of the processor that 
reaches a certain value (hotspot) in a aggressive operating 
mode (voltage, frequency) or a transient variation of the 
power supply voltage resulting from the power-on of a 
neighbour processor that shares the same power lines (IR 
drop). Note that a test can only detect reproducible faults, 
thus transient faults cannot be addressed by it. 

The fault detection probability at time t is the probability of 
detecting an active fault with any of the n tests applied till 
time t. The probability for detecting a fault varies 
depending on the test period and both activation duration 
and occurrence frequency probabilities of the fault (we 
assume a high test quality). As an example, for a given fault 
detection probability, an intermittent fault with a low 
activation duration probability and a low occurrence 
frequency probability results in a lower test period than a 
fault with a high activation duration probability and a low 
occurrence frequency probability – that tends to behave as a 
permanent fault. In [6], authors present an analytical 
solution for designing the optimal on-line self-testing 
period in uni-processor for detecting a processor failure 
with a predefined fault detection probability. 

HW design effort for integrating on-line self-testing 
resources in the architecture is relatively minimal and quasi 
non intrusive in the processor core design. Actually, the test 
resources used for manufacturing test can be re-used such 
as scan chains, JTAG, BIST, test pattern decompression 



and test patterns [16][18]. A global test controller should be 
built on the top of these features for selectively configuring 
and activating the needed test resources depending on the 
scheduling and allocation decisions. In the paper, we 
especially focus on the test of processors. It can be 
performed with hardware-based self-test (HBST) using 
Built-in-self-test (BIST) techniques and JTAG support, or 
software-based self-test (SBST) techniques [21]. Due to 
paper size limitation, both test implementation and 
application problems will be not addressed here. Note that 
the test of processors with SBST techniques can also detect 
faults in the resources used by test (memories and 
interconnect) but with a lower fault coverage. 

Performance and power consumption overheads caused by 
the test require an important attention. Low-power aware 
test pattern generation and design-for-test technique can 
reduce power consumption and temperature impacts [19]. 
Relatively to energy consumption, the duration of a test task 
is often lower than that of application tasks. In the paper, 
we explicitly focus on the application performance problem 
even though we will consider power consumption problem 
in the next work steps. 

On-line self-testing can be viewed as a single or multiple 
SW tasks that can run periodically and possibly 
concurrently with a user application. A test task is 
characterized by a length (number of cycles) and a period at 
which the test task should be applied. Compared to a 
running application task, a running test task will be never 
stopped before its normal end and it will never share the 
resources under test with the other tasks. Moreover, the 
resources under test should be logically isolated from the 
rest of the system for preventing the propagation of an 
active error.  

Different “application vs. test” execution scenarios can 
appear, depending on the required reliability level. Firstly, 
the test tasks can be only executed at boot time, without any 
user application. Secondly, the test tasks can be executed at 
runtime as well, but after stopping the user application. 
Thirdly, as an alternative to the previous one, the test can be 
executed concurrently during the user application 
execution. The last scenario enables a higher fault coverage 
than the two first ones because it enables the detection of 
intermittent faults that can cause bursts of computing errors 
or fatal errors in the control. Compared to the second 
scenario, the last one also reduces the performance penalty 
because the application continues its execution, even if it 
will run in a degraded mode. In that case, the test tasks have 
to be scheduled and allocated to processors concurrently 
with the user application. The performance penalty will 
depend on the rate at which processors will be tested for the 
highest fault detection probability and the test length. Low 
test period and length values imply a low performance 
penalty but also low fault detection probability and fault 
coverage levels.  

3. ON-LINE SELF-TESTING IN 
MULTIPROCESSORS 

We address the problem of on-line self-test scheduling and 
allocation policies in an asymmetric architecture. Note that 
the principles we will develop in this section can be 
extended to any multiprocessor architecture. This 
architecture is composed of P processors with local 
memories, a shared memory and a programmable network, 
such as a multi-bus, that allows any processor to read/write 
data in the shared memory or peripherals with an identical 
time (uniform memory access).  

A centralized control part manages tasks execution, 
memory allocation and communication between the tasks. 
Only one task can run on a processor at a time (no multi-
threading support). The control is able to preempt a running 
task and even more it is able to migrate a running task from 
one processor to another one, especially for real-time and 
power consumption considerations. In this paper, we only 
consider the case of data-flow applications. However, this 
limitation does not restrict the scope of the following 
demonstration. An application control graph is loaded in the 
control part. It represents the data / control dependencies 
between the tasks. A task is a sequence of instructions that 
can run to completion independently of other tasks. A task 
is either in the suspended state (not scheduled) or runnable 
state (task is ready to run) or running state (it is running on 
a processor core). 

We now describe the principle of the on-line self-testing 
control in this type of architecture. It goes through test 
configuration, test task scheduling and allocation, and test 
observation. First of all, a Test configuration function sets 
the length and period values of the test task. The period 
value is derived from the expected fault detection 
probability required by the application, as it will be 
explained in Section 4. The test length can be a unique 
value for all of the processor cores or a different value for 
each one. The test length can be predefined at design time, 
with the help of ATPG and fault simulation tools [20]. In 
addition, the value can be updated during the lifetime of the 
architecture. In that case, the value is a parameter of the 
control part that is loaded at boot time. 

At each control tick period, a Scheduling function 
determines the priority between the runnable tasks and the 
running tasks. If one or more test tasks are runnable, the 
function can set a higher priority to the test task(s) or a 
lower priority than the application tasks, depending on the 
implemented policy. In the former case, a test task will be 
next allocated to a processor. One consequence is that a 
runnable application task that might have run is here 
delayed and will be re-scheduled at the next tick period. In 
the latter case, the test task will be delayed to the next 



control ticks. This will decrease the likelihood for detecting 
an active fault.  

Thirdly, an Allocation function allocates the HW resources 
to the scheduled tasks from the task having the highest 
priority to the lowest. The number of allocated tasks is 
equal to the number of processor cores (fault-free). The 
policy is based on a simple algorithm, as follows. The 
allocator first selects the task having the highest priority. If 
the task was not running, it tries to allocate it to a free 
processor, if available. If no free processor is available, the 
allocator preempts the running task that has the lowest 
priority and loads the candidate task. The algorithm is 
illustrated in Figure 1.a. Relatively to the test, the allocator 
does not allocate it to a processor already under test. The 
allocation policy should distribute the test tasks over the 
different processors in a way that enables the same fault 
detection probability between the processors. Note that it 
should not allocate it to a processor core that was tested at 
the previous test period. The function will also control the 
logical isolation of the resources under test from the rest of 
the system and the test application (test program and data 
loading in memories, test application start/stop). In a 
general way, the Allocation function also allocates memory 
segments and sets the predefined processor power mode 
(voltage & frequency) that can be viewed as task 
parameters, as well. 

Fourthly, when the test normally ends, a signal coming 
from the processor under test triggers the Test observation 
function that gathers and analyzes the test results. The 
control part of the architecture will next reallocate the 
resources under test to the application tasks (PASS result) 
or applies confinement / repair actions (FAIL result) and 
even more recovering actions (out of scope of this paper). 

4. SELF-TEST CONFIGURATION 

In this section, we define the self-test configuration that is 
an important parameter for reliability control. Self-test 
configuration determines the period at which the tasks 
should be scheduled for execution and the length of the test 
which is proportional to the number of test patterns.  

As a starting point of our work and for reader convenience, 
we assume that all the processors are identical relatively to 
the probability of a fault occurrence, independently of the 
way the application is dispatched in the architecture. All the 
processors have to be tested with identical test period and 
length. Therefore, we consider that only one periodic test 
task is scheduled at a time. The rate at which the test task is 
scheduled depends on the expected fault detection 
probability on each processor. Let’s call Tp the ideal test 
period of each processor for a given detection probability 
objective. The period T of the test task will be equal to 
Tp/P, where P is the total number of processors. 

The value of the test period Tp depends on the expected 
fault detection probability. The analytical equation of this 
probability is derived in [6][24]. Here, we only summarize 
the main steps. Firstly, we define a processor failure model. 
A processor subject to faults can be either in operating or 
faulty state, depending on whether the fault is active or not. 
We assume that the occurrence of the first fault causes a 
processor failure. The two-state continuous-parameter 
Markov model allows predicting future states of a system 
with only the knowledge of the present state. The operating 
and faulty states are named state 0 and state 1, respectively. 
Let λ and µ denote the rates of leaving state 0 and state 1, 
respectively. The mean time during which the processor is 
operational (faulty) has an exponential distribution with the 
parameters 1/λ (1/µ). 1/λ represents the occurrence 
frequency probability and 1/µ represents the activation time 
probability of a fault (faulty state). The Markov model 
defines the transition probability Pi,j(t) from the state i to the 
state j after at a time t, as follows: 
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Let’s now denote Tn as the begin time of the nth test and 
∆Tn= Tn – Tn-1 as the time interval between the nth and n-1th 
tests. The fault detection probability at time Tn can be 
expressed as follows. It is the probability that a fault 
becomes active during the time interval [0 , Tn] and the 
probability that the active fault is detected with any of the n 
tests applied since time 0: 
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Where the first term represents the probability that the 
processor reaches the faulty state (state 1) at time Tn, 
assuming it was in the operating state at time 0. The second 
term is the probability of detecting a fault with any of the 
n tests, assuming that the fault coverage of a test is ideally 
equal to 100%. 

5. SELF-TEST POLICIES 

Relatively to the self-test configuration described above, we 
derive three typical self-test policies that offer different 
trade-offs between the performance penalty and fault 
detection probability. Let’s denote Tk as the tick period of 
the control part i.e. the period at which all of the tasks are 
scheduled and allocated (application and test tasks). Let’s 
denote T as the period at which a test task is woken up 
(runnable state). T is necessarily an integer multiple of Tk.  



5.1. Aggressive self-test policy 

This policy periodically applies a test to the different 
processors with a constant and identical period value, 
whatever the processor usage. This strategy guarantees the 
expected period for all of processors to the detriment of the 
performance.  

At each tick Tk= a*T (integer a > 1), a test task is in a 
runnable state and must be allocated to a processor 
according to a round-robin policy. For that, let’s consider 
that the scheduler provides an allocation table of size P that 
stores the application tasks to be allocated to processors. 
The tasks are ordered from the highest priority to the lowest 
priority by the scheduler. If processor ‘i’ must be tested, the 
application task stored in the ith table index is replaced by 
the test task. Next, all non test tasks are (re-)allocated to the 
P processors. If the replaced task in the table was running, 
then it is pre-empted; its execution is stopped and its 
context is saved before loading the test task. If the task was 
only in a runnable state, then it will be re-scheduled in the 
next control tick Tk. 

Figure 1 illustrates a scenario example with three 
processors when no test is applied (Fig 1.b) and when a test 
task is allocated at a rate of T (Fig 1.c). Note that the real 
test period of each processor Tp is equal to T*P, where P is 
the number of processors. For preventing the pre-emption 
of application tasks with a high priority, the application 
tasks in the table are re-ordered according to the test history 
of the processors. The application task with the highest 
priority is stored in the table index corresponding to the 
most recently tested processor, and so on. 

5.2. Idleness aware self-test policy 

Compared to the previous scenario, this policy uses the idle 
state of the processors to execute a test task before 
preempting a running application task.  

The control checks if the allocation table contains an empty 
index (e.g. index j). If there is one, it next checks if the 
corresponding processor j was already tested since it was in 
the idle state. Actually, let’s assume that an application only 
uses P-1 processors among P. The Pth processor is always 
free (idle state). If no verification is performed, then it will 
happen that the free processor will be always tested while 
the others will remain untested. If no free processor can be 
found, the test task is inserted in the allocation table 
according the procedure described in 5.1. Figure 1.d 
illustrates a scenario example with three processor cores. 
Note that the application task allocation is here modified 
according to the description of Section 5.1.  

The real test period of each processor may vary over time. 
The time difference between two consecutive tests of a 
same processor will be greater or equal to Tp. 

Consequently, the resulting fault detection probability may 
differ from one processor to another one. In this scenario, 
the test of a free processor may be also extended to 
performance and power characterizations. 
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Figure 1 – a) Allocation algorithm principle. b), c) and d) Examples of 
self-test policy application. Blue blocks represent test tasks while the 

other blocks are application tasks. 

5.3. Idleness&Priority aware self-test policy 

Compared to the previous policy, the application task 
priorities are considered when the test task is inserted in the 
allocation table, instead of the round-robin algorithm. When 
no free processor can be tested, the application task with the 
lowest priority in the allocation table is replaced by the test 
task. The assignation of the test task to the processor 
depends on the scheduling policy used for deriving the 
allocation table with the ordered application tasks. 

6. RESULTS 

In this section, we compare the impact of the three self-test 
policies relatively to the performance penalty and the 
resulting fault detection probability of each processor. The 
evaluations are made with a functional simulation platform 
that simulates an asymmetric multiprocessor composed of 
eight MIPS-like Instruction Set Simulators [22] and a 
control part that implements the Enhanced Least-Laxity-
First scheduling policy [23]. The architecture is modelled 
with SystemC language. The simulator accounts for the 
number of executed instructions in each processor and the 
number of preemptions. 

The analysis is performed with a virtual application that 
allows us to control the architecture load from 30% to 95%. 
It is the average percentage of the occupation of all 
processors by the application tasks (without test) over the 
time. For a given application duration equal to 1s, we 
consider two types of task lengths: a long task length 
(125ms) that corresponds to 8 tasks per processor and a 
short task length (10 ms) that corresponds to 100 tasks per 



processor. We consider the case a fault characterized by 
µ/λ=10 (µ= 0.1ms-1). Application requires that this type of 
fault must be detected with a probability of 99.9% at the 
end of execution. From equation 3 (Section 4), Tp= 7.69ms 
(ideal test period of processors) and T= 961.53us. The total 
number of tests per processor will be equal to 130. 

For each self-test policy, we consider two different test 
lengths: L1= 0.15ms and L2= 0.3ms that are approximately 
the test length of a MIPS processor with a SBST approach 
[21]. Note that this value can be back-annotated from 
ATPG tools and fault simulation [20] after gate level 
synthesis. Conversely, the designer may explore the impact 
of different self-test lengths and may express an acceptable 
maximum test length to test engineers, as an input. We 
perform several simulations. Each simulation corresponds 
to a triplet (self-test policy, architecture load, test length). 
The 1st policy corresponds to the one described in Section 
5.1, the 2nd one to Section 5.2 and 3rd one to Section 5.3. 

Figures 2.a) and 2.b) show the application duration 
overhead in % over the architecture load relatively to the 
three different self-policies of Section 5. Figure 2.a) shows 
the results for short tasks and the two different test lengths 
while Figure 2.b) considers long tasks. The 1st self test 
policy causes a highest penalty than the 3rd one. The 
difference increases significantly with long tasks. When the 
architecture load remains below 85%, the overhead remains 
almost constant. When an application task is pre-empted by 
a test task, the control finds most of the time a free 
processor on which it can migrate the application task. 
Above 85%, the overhead grows with a steeper slope. The 
number of idle states is not enough for mitigating the effect 
of the preemption, thus causing a higher penalty.  

Figures 2.c) and 2.d) show the total number of preemption 
occurrences. Figure 2.c) considers short tasks while 
Figure 2.d) considers long ones. When no test runs, the 
number of preemptions is zero. In both figures, whatever 
the self-test policies, the number of preemption occurrences 
increase with the load value. The preemption of a task with 
a high priority (due to test) implies most of the time, the 
preemption of the one with the lowest priority. This 
phenomenon is exacerbated when the number of tests per 
task increases with the architecture load growth.  

For an identical test length in each policy, the 1st policy 
causes the highest pre-emption count while the 3rd policy 
causes the lowest one, whatever the task length. In both 
figures, the impact of the test length on the pre-emption 
count is more significant on long tasks than short ones. 
When the duration of tests per task increases, the number of 
preemptions increases. This phenomenon is exacerbated 
with the architecture load growth. 

Figures 2.e) and 2.f) show the fault detection probability of 
the architecture (average of the fault detection probability 
value of each processor) relatively to architecture load and 

self-test policy. The results are computed at the time of the 
last test execution (Tn). Figure 2.e) shows the results with 
short tasks while Figure 2.f) shows the results with long 
ones. For each load value, the vertical bars on the curves 
represent the maximum deviation between the average 
value and the probability value obtained on the eight 
processors. 

In both figures, the fault detection probability remains close 
to the reference probability (99.9%). The maximum 
deviation below the reference is equal to 0.3% (Figure 2.f). 
1st self-test policy remains strongly constant. The variations 
of the average value over the load and the deviations are 
due to the variation of the real test period on each processor 
over the time. 

In both figures, the 1st policy provides the highest average 
fault detection probability than the 3rd one, until a load of 
80%. Above this value, the benefit of the 2nd and 3rd 
policies is quasi identical. As we can show, long tasks have 
a more significant impact on the fault detection probability 
than short tasks. We can also show that the length of tests 
has a similar effect (not shown here for clarity 
considerations). The reason is due to the application 
duration overhead relatively to the number of tests. While 
the number of tests remain quasi constant, the time 
difference between the tests is greater with when long task 
(or long test lengths) and so, the time Tn (from eq. 3).  

For measuring the trade-off between performance and fault 
detection probability, we compute the ratio between the 
preemption count and the fault detection probability for 
each architecture load (short task length). Figure 3 plots the 
obtained ratio over the architecture load for the three self-
test policies, for short tasks. Whatever the architecture load, 
we note that the 3rd policy (Priority&Idleness aware policy) 
always has the lowest value. For long tasks, the position of 
the curves will remain identical, at least with load values 
below 80%. As a result, a multiprocessor that periodically 
applies a self-test procedure to the different processors in a 
way that considers the idle times, task priorities and test 
history of processors offers a good trade-off between 
performance and fault detection probability. 
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7. CONCLUSION 

In this paper, we described how on-line self-testing can be 
controlled in a real-time embedded multiprocessor for non 
safety critical applications. We analyzed the impact of three 
on-line self-testing policies in terms of performance penalty 
and fault detection probability in a simulated asymmetric 
architecture. It was shown that a policy that periodically 
applies a test to each processor in a way that accounts for 
the idle states of processors, the test history and the task 
priority offers a good trade-off between the performance 
and fault detection probability. The evaluations performed 
in this paper considered actually the particular case of an 
asymmetric architecture with predefined scheduling and 
allocation policies. However, the principle and 
methodology can be generalized to other multiprocessor 
architectures. 
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Figure 2 – Application duration overhead (%) vs architecture load for short a) and long b) tasks. Preemption count for a) short and b) long tasks.  
Fault detection probability of architecture (%) for  e) short tasks and f) long tasks. 

 


