
ANALYSIS OF ON-LINE SELF-TESTING POLICIES FOR REAL- TIME EMBEDDED
MULTIPROCESSORS IN DSM TECHNOLOGIES

O. Heron*, J. Guilhemsang* N. Ventroux** A. Giulieri***

(*) CEA, LIST, Embedded System Reliability Laboratory, PC 94, Gif-sur-Yvette, F-91191, France
(**) CEA, LIST, Embedded Computing Laboratory, PC 94, Gif-sur-Yvette, F-91191, France

email: olivier.heron@cea.fr
(***) LEAT, Univ. de Nice-Sophia Antipolis, Valbonne, F-06560, France. email: alain.giulieri@polytech.unice.fr

ABSTRACT

 Advances in DSM technologies have a negative impact on
yield and reliability of digital circuits. On-line self-testing is an
interesting solution for detecting permanent and intermittent
faults in non safety critical and real-time embedded
multiprocessors. In this paper, we describe and evaluate three
scheduling and allocation policies for on-line self-testing. We
show that a policy that periodically applies a test procedure to
the different processors in a way that considers idle times, test
history of processors and task priorities offers a good trade-off
between performance and fault detection probability.

1. INTRODUCTION

ITRS Roadmap [1] predicts that integrated circuits (IC)
reliability will become a critical task for semiconductor
industry in Deep Sub-Micron (DSM) technologies (sub-
45nm). Reliability is defined as the ability of an IC to work
without a failure and within given performance limits for a
specified time and environment [2]. New materials and
smaller devices provide benefits for performance, power
consumption and transistor density but have a negative
impact on yield and reliability. Many billions of transistors
in ICs will be unusable due to extreme static variations. ICs
will also encounter frequent intermittent errors due to their
increasing sensitivity to external neutrons, alpha particles,
transient voltage variations (such as IR drop) and junction
temperature variations (such as thermal hotspots) [3][4][5].
Transistors, vias / contacts and wires will age and degrade
faster over time, causing intermittent errors due to the
parameter variations and even more permanent errors [6],
thus shortening IC lifetime. For all the above reasons,
reliability becomes a key issue in architecture design.

Design techniques using fault tolerance concepts help to
overcome yield and reliability related errors in digital IC. A
fault-tolerant IC may go through one or more of the
following stages: error masking, error detection, error
correction / containment, IC repair / reconfiguration, and IC
recovery [7]. Several fault tolerance techniques for
multiprocessors were proposed in the past, such as [8][9].
Most of these solutions do not address explicitly error
detection; they rather focus on the recovery procedure. In

addition, most of them are not suitable for our purpose that
concerns non-safety critical and real-time applications such
as Media and Telecommunication in embedded
multiprocessors. In this context, the multiprocessors rather
integrate hundreds of RISC processors that have a less
complex micro-architecture (scalar pipeline and non-
multithreading support). All the processor cores are
occupied by a SW task most of the time (no spare) therefore
optimizing performance and power efficiencies (mW/um2
and Gops/s/um2).

The design of a cost-effective error detection solution for
embedded multiprocessors still appears to be an open
problem and hence a critical focus in DSM technologies.
Some past works focused on the on-line error detection
problem in single RISC processors. “Razor” [10] allows
detecting and recovering from delay errors, with the aid of
special pipeline latches. “Diva” [11] and “Argus” [12]
integrate checkers in the micro-architecture for detecting
control and data flow errors. The “Bulletproof pipeline”
[13] inserts BIST modules for testing faults in the pipeline
stages during stall times. These solutions prevent from
committing most or all errors but to the detriment of micro-
architecture design effort, area and power consumption
overheads.

Real-time and non safety critical applications do not need
on-line error detection solutions that would track HW errors
cycle by cycle in the most aggressive scenario. Conversely,
if an active error escapes from the faulty resource and
propagates through the architecture, then it may not always
cause a fatal multiprocessor failure. Such applications can
naturally tolerate the occurrence and propagation of one or
more undetected errors, such as infrequent computing
errors. Depending on the expected reliability level, the
circuit may only be checked at boot time and sometimes
during the execution. A boot checking mainly addresses
permanent errors while a checking during execution can
also detect intermittent errors that can cause bursts of
computing errors or fatal errors (e.g. program counter errors
in a processor).

As an alternative to the solutions listed above, on-line self-
testing seems to be an interesting candidate that can fit well
with our error detection requirements. Test is a common
technique used for detecting faults in IC [20]. It is generally

applied during manufacturing process (offline testing), at
boot time or periodically during the IC lifetime. For the last
case, we talk about on-line self-testing for which the test is
automatically applied by the circuit itself [18]. This
approach requires a lower design effort, induces lower area
and power consumption overheads and can detect several
fault models with a high coverage, but in detriment of error
detection latency [16]. Under test mode, the circuit is
configured in a way where the resources under test are
logically isolated from the rest of the system. When the test
is performed concurrently with the application, the latter
should continue its execution on the remaining resources.
The control part of a multiprocessor architecture should be
able to dispatch task applications and tests over the
architecture in a way that minimizes the performance
penalties and maximizes the test efficiency.

In this paper, we explain how on-line self-testing can be
integrated in an embedded multiprocessor architecture and
we describe three possible self-test scheduling and
allocation policies for detecting intermittent and permanent
faults. With the help of simulation, we evaluate the impact
of these policies on performance and fault detection
probability in an asymmetric multiprocessor.

The paper is organized as follows. In Section 2, we
motivate our approach. In Section 3, we describe the
principles of on-line self-testing in an embedded
multiprocessor. In Section 4, we detail a self-test
configuration. Section 5 describes three self-test policies.
Section 6 presents the results about performance and fault
detection probability for an asymmetric architecture.
Finally, Section 7 concludes the paper.

2. MOTIVATIONS

In a multiprocessor context, on-line self-testing consists in
testing frequently a sub-part of the architecture while the
rest of the resources still run the jobs, concurrently. Li and
al. [16] propose a solution for detecting stuck-at and delay
faults in OpenSPARC T1 multiprocessor. High quality test
patterns are generated (offline) and stored in an external
non volatile memory. An HW support automatically loads
and applies the test patterns to every core periodically while
others remain in a normal mode. In addition, the proposed
solution enables the prediction and diagnosis of such “hard”
failures. One limitation the solution is that they do not
address explicitly the scheduling and allocation problems
for decreasing the performance and power penalties
induced by the test. In [17], authors reserve a spare
processor for test purpose so as, when the operating system
activates a test session on a processor that is running a task,
the task is preempted and migrated to the spare processor.
This solution can reduce the performance penalty
depending on the preemption and migration costs but to the

detriment of performance and power efficiencies. In a
general way, most of papers address the integration and
application problems of the on-line self-testing. To our
knowledge, there are no papers that address explicitly the
questions: at which rate the test should be applied? And
which processor is chosen at each test time? In this paper,
we focus on the configuration and scheduling and allocation
policies for on-line self-testing in real-time embedded
multiprocessors.

The design of an optimal on-line self-testing technique for
embedded multiprocessors should offer a good trade-off
between fault coverage, fault detection probability, HW
design effort and performance and power consumption
overheads. Fault coverage is the number of faults that a
given test pattern sequence can detect among the total
number of possible faults, for different fault models [20].
High fault coverage for several fault models increases the
likelihood for detecting a multiprocessor failure, but results
in a long test pattern sequences. On-line self-testing should
address both permanent and intermittent faults. While
permanent faults are mainly due to aging phenomenon such
as NBTI, HCI, TDDB, etc. [14], intermittent or temporary
faults are more complex failure modes. Such faults are
caused by the extreme variation of timing margins of long
paths above the limit thus causing a timing violation of the
register setup and hold times [3][4][15]. In very DSM
technology, the root cause may be due to a transient
variation of the junction temperature of the processor that
reaches a certain value (hotspot) in a aggressive operating
mode (voltage, frequency) or a transient variation of the
power supply voltage resulting from the power-on of a
neighbour processor that shares the same power lines (IR
drop). Note that a test can only detect reproducible faults,
thus transient faults cannot be addressed by it.

The fault detection probability at time t is the probability of
detecting an active fault with any of the n tests applied till
time t. The probability for detecting a fault varies
depending on the test period and both activation duration
and occurrence frequency probabilities of the fault (we
assume a high test quality). As an example, for a given fault
detection probability, an intermittent fault with a low
activation duration probability and a low occurrence
frequency probability results in a lower test period than a
fault with a high activation duration probability and a low
occurrence frequency probability – that tends to behave as a
permanent fault. In [6], authors present an analytical
solution for designing the optimal on-line self-testing
period in uni-processor for detecting a processor failure
with a predefined fault detection probability.

HW design effort for integrating on-line self-testing
resources in the architecture is relatively minimal and quasi
non intrusive in the processor core design. Actually, the test
resources used for manufacturing test can be re-used such
as scan chains, JTAG, BIST, test pattern decompression

and test patterns [16][18]. A global test controller should be
built on the top of these features for selectively configuring
and activating the needed test resources depending on the
scheduling and allocation decisions. In the paper, we
especially focus on the test of processors. It can be
performed with hardware-based self-test (HBST) using
Built-in-self-test (BIST) techniques and JTAG support, or
software-based self-test (SBST) techniques [21]. Due to
paper size limitation, both test implementation and
application problems will be not addressed here. Note that
the test of processors with SBST techniques can also detect
faults in the resources used by test (memories and
interconnect) but with a lower fault coverage.

Performance and power consumption overheads caused by
the test require an important attention. Low-power aware
test pattern generation and design-for-test technique can
reduce power consumption and temperature impacts [19].
Relatively to energy consumption, the duration of a test task
is often lower than that of application tasks. In the paper,
we explicitly focus on the application performance problem
even though we will consider power consumption problem
in the next work steps.

On-line self-testing can be viewed as a single or multiple
SW tasks that can run periodically and possibly
concurrently with a user application. A test task is
characterized by a length (number of cycles) and a period at
which the test task should be applied. Compared to a
running application task, a running test task will be never
stopped before its normal end and it will never share the
resources under test with the other tasks. Moreover, the
resources under test should be logically isolated from the
rest of the system for preventing the propagation of an
active error.

Different “application vs. test” execution scenarios can
appear, depending on the required reliability level. Firstly,
the test tasks can be only executed at boot time, without any
user application. Secondly, the test tasks can be executed at
runtime as well, but after stopping the user application.
Thirdly, as an alternative to the previous one, the test can be
executed concurrently during the user application
execution. The last scenario enables a higher fault coverage
than the two first ones because it enables the detection of
intermittent faults that can cause bursts of computing errors
or fatal errors in the control. Compared to the second
scenario, the last one also reduces the performance penalty
because the application continues its execution, even if it
will run in a degraded mode. In that case, the test tasks have
to be scheduled and allocated to processors concurrently
with the user application. The performance penalty will
depend on the rate at which processors will be tested for the
highest fault detection probability and the test length. Low
test period and length values imply a low performance
penalty but also low fault detection probability and fault
coverage levels.

3. ON-LINE SELF-TESTING IN
MULTIPROCESSORS

We address the problem of on-line self-test scheduling and
allocation policies in an asymmetric architecture. Note that
the principles we will develop in this section can be
extended to any multiprocessor architecture. This
architecture is composed of P processors with local
memories, a shared memory and a programmable network,
such as a multi-bus, that allows any processor to read/write
data in the shared memory or peripherals with an identical
time (uniform memory access).

A centralized control part manages tasks execution,
memory allocation and communication between the tasks.
Only one task can run on a processor at a time (no multi-
threading support). The control is able to preempt a running
task and even more it is able to migrate a running task from
one processor to another one, especially for real-time and
power consumption considerations. In this paper, we only
consider the case of data-flow applications. However, this
limitation does not restrict the scope of the following
demonstration. An application control graph is loaded in the
control part. It represents the data / control dependencies
between the tasks. A task is a sequence of instructions that
can run to completion independently of other tasks. A task
is either in the suspended state (not scheduled) or runnable
state (task is ready to run) or running state (it is running on
a processor core).

We now describe the principle of the on-line self-testing
control in this type of architecture. It goes through test
configuration, test task scheduling and allocation, and test
observation. First of all, a Test configuration function sets
the length and period values of the test task. The period
value is derived from the expected fault detection
probability required by the application, as it will be
explained in Section 4. The test length can be a unique
value for all of the processor cores or a different value for
each one. The test length can be predefined at design time,
with the help of ATPG and fault simulation tools [20]. In
addition, the value can be updated during the lifetime of the
architecture. In that case, the value is a parameter of the
control part that is loaded at boot time.

At each control tick period, a Scheduling function
determines the priority between the runnable tasks and the
running tasks. If one or more test tasks are runnable, the
function can set a higher priority to the test task(s) or a
lower priority than the application tasks, depending on the
implemented policy. In the former case, a test task will be
next allocated to a processor. One consequence is that a
runnable application task that might have run is here
delayed and will be re-scheduled at the next tick period. In
the latter case, the test task will be delayed to the next

control ticks. This will decrease the likelihood for detecting
an active fault.

Thirdly, an Allocation function allocates the HW resources
to the scheduled tasks from the task having the highest
priority to the lowest. The number of allocated tasks is
equal to the number of processor cores (fault-free). The
policy is based on a simple algorithm, as follows. The
allocator first selects the task having the highest priority. If
the task was not running, it tries to allocate it to a free
processor, if available. If no free processor is available, the
allocator preempts the running task that has the lowest
priority and loads the candidate task. The algorithm is
illustrated in Figure 1.a. Relatively to the test, the allocator
does not allocate it to a processor already under test. The
allocation policy should distribute the test tasks over the
different processors in a way that enables the same fault
detection probability between the processors. Note that it
should not allocate it to a processor core that was tested at
the previous test period. The function will also control the
logical isolation of the resources under test from the rest of
the system and the test application (test program and data
loading in memories, test application start/stop). In a
general way, the Allocation function also allocates memory
segments and sets the predefined processor power mode
(voltage & frequency) that can be viewed as task
parameters, as well.

Fourthly, when the test normally ends, a signal coming
from the processor under test triggers the Test observation
function that gathers and analyzes the test results. The
control part of the architecture will next reallocate the
resources under test to the application tasks (PASS result)
or applies confinement / repair actions (FAIL result) and
even more recovering actions (out of scope of this paper).

4. SELF-TEST CONFIGURATION

In this section, we define the self-test configuration that is
an important parameter for reliability control. Self-test
configuration determines the period at which the tasks
should be scheduled for execution and the length of the test
which is proportional to the number of test patterns.

As a starting point of our work and for reader convenience,
we assume that all the processors are identical relatively to
the probability of a fault occurrence, independently of the
way the application is dispatched in the architecture. All the
processors have to be tested with identical test period and
length. Therefore, we consider that only one periodic test
task is scheduled at a time. The rate at which the test task is
scheduled depends on the expected fault detection
probability on each processor. Let’s call Tp the ideal test
period of each processor for a given detection probability
objective. The period T of the test task will be equal to
Tp/P, where P is the total number of processors.

The value of the test period Tp depends on the expected
fault detection probability. The analytical equation of this
probability is derived in [6][24]. Here, we only summarize
the main steps. Firstly, we define a processor failure model.
A processor subject to faults can be either in operating or
faulty state, depending on whether the fault is active or not.
We assume that the occurrence of the first fault causes a
processor failure. The two-state continuous-parameter
Markov model allows predicting future states of a system
with only the knowledge of the present state. The operating
and faulty states are named state 0 and state 1, respectively.
Let λ and µ denote the rates of leaving state 0 and state 1,
respectively. The mean time during which the processor is
operational (faulty) has an exponential distribution with the
parameters 1/λ (1/µ). 1/λ represents the occurrence
frequency probability and 1/µ represents the activation time
probability of a fault (faulty state). The Markov model
defines the transition probability Pi,j(t) from the state i to the
state j after at a time t, as follows:

()()tetP *
1,0 1*)(µλ

µλ
λ +−−
+

= [eq. 1]

)(1)(1,00,0 tPtP −= [eq. 2]

Where P0,0(t) is the probability to remain in the operating
state (0). Additionally, the steady-state probabilities of
being at state 1 (0) for an indifferent observation time is

+=+= µλ
µπµλ

λπ 01

.

Let’s now denote Tn as the begin time of the nth test and
∆Tn= Tn – Tn-1 as the time interval between the nth and n-1th
tests. The fault detection probability at time Tn can be
expressed as follows. It is the probability that a fault
becomes active during the time interval [0 , Tn] and the
probability that the active fault is detected with any of the n
tests applied since time 0:

[] ()

 ∆−−= ∏
=

−
n

i
i

T
n TPeTd n

1
0,0

*
0 1**1)(λπ [eq. 3]

Where the first term represents the probability that the
processor reaches the faulty state (state 1) at time Tn,
assuming it was in the operating state at time 0. The second
term is the probability of detecting a fault with any of the
n tests, assuming that the fault coverage of a test is ideally
equal to 100%.

5. SELF-TEST POLICIES

Relatively to the self-test configuration described above, we
derive three typical self-test policies that offer different
trade-offs between the performance penalty and fault
detection probability. Let’s denote Tk as the tick period of
the control part i.e. the period at which all of the tasks are
scheduled and allocated (application and test tasks). Let’s
denote T as the period at which a test task is woken up
(runnable state). T is necessarily an integer multiple of Tk.

5.1. Aggressive self-test policy

This policy periodically applies a test to the different
processors with a constant and identical period value,
whatever the processor usage. This strategy guarantees the
expected period for all of processors to the detriment of the
performance.

At each tick Tk= a*T (integer a > 1), a test task is in a
runnable state and must be allocated to a processor
according to a round-robin policy. For that, let’s consider
that the scheduler provides an allocation table of size P that
stores the application tasks to be allocated to processors.
The tasks are ordered from the highest priority to the lowest
priority by the scheduler. If processor ‘i’ must be tested, the
application task stored in the ith table index is replaced by
the test task. Next, all non test tasks are (re-)allocated to the
P processors. If the replaced task in the table was running,
then it is pre-empted; its execution is stopped and its
context is saved before loading the test task. If the task was
only in a runnable state, then it will be re-scheduled in the
next control tick Tk.

Figure 1 illustrates a scenario example with three
processors when no test is applied (Fig 1.b) and when a test
task is allocated at a rate of T (Fig 1.c). Note that the real
test period of each processor Tp is equal to T*P, where P is
the number of processors. For preventing the pre-emption
of application tasks with a high priority, the application
tasks in the table are re-ordered according to the test history
of the processors. The application task with the highest
priority is stored in the table index corresponding to the
most recently tested processor, and so on.

5.2. Idleness aware self-test policy

Compared to the previous scenario, this policy uses the idle
state of the processors to execute a test task before
preempting a running application task.

The control checks if the allocation table contains an empty
index (e.g. index j). If there is one, it next checks if the
corresponding processor j was already tested since it was in
the idle state. Actually, let’s assume that an application only
uses P-1 processors among P. The Pth processor is always
free (idle state). If no verification is performed, then it will
happen that the free processor will be always tested while
the others will remain untested. If no free processor can be
found, the test task is inserted in the allocation table
according the procedure described in 5.1. Figure 1.d
illustrates a scenario example with three processor cores.
Note that the application task allocation is here modified
according to the description of Section 5.1.

The real test period of each processor may vary over time.
The time difference between two consecutive tests of a
same processor will be greater or equal to Tp.

Consequently, the resulting fault detection probability may
differ from one processor to another one. In this scenario,
the test of a free processor may be also extended to
performance and power characterizations.

Test task?

Self-test policy

(Section 5)
Is task running?

end free processor?

Allocate to it
Preempt the task with

the lowest priority

n
y

y

y

n

n

P1

P2

P3

a) b)

P1

P2

P3

T
Tp

P1

P2

P3

c) d)

Figure 1 – a) Allocation algorithm principle. b), c) and d) Examples of
self-test policy application. Blue blocks represent test tasks while the

other blocks are application tasks.

5.3. Idleness&Priority aware self-test policy

Compared to the previous policy, the application task
priorities are considered when the test task is inserted in the
allocation table, instead of the round-robin algorithm. When
no free processor can be tested, the application task with the
lowest priority in the allocation table is replaced by the test
task. The assignation of the test task to the processor
depends on the scheduling policy used for deriving the
allocation table with the ordered application tasks.

6. RESULTS

In this section, we compare the impact of the three self-test
policies relatively to the performance penalty and the
resulting fault detection probability of each processor. The
evaluations are made with a functional simulation platform
that simulates an asymmetric multiprocessor composed of
eight MIPS-like Instruction Set Simulators [22] and a
control part that implements the Enhanced Least-Laxity-
First scheduling policy [23]. The architecture is modelled
with SystemC language. The simulator accounts for the
number of executed instructions in each processor and the
number of preemptions.

The analysis is performed with a virtual application that
allows us to control the architecture load from 30% to 95%.
It is the average percentage of the occupation of all
processors by the application tasks (without test) over the
time. For a given application duration equal to 1s, we
consider two types of task lengths: a long task length
(125ms) that corresponds to 8 tasks per processor and a
short task length (10 ms) that corresponds to 100 tasks per

processor. We consider the case a fault characterized by
µ/λ=10 (µ= 0.1ms-1). Application requires that this type of
fault must be detected with a probability of 99.9% at the
end of execution. From equation 3 (Section 4), Tp= 7.69ms
(ideal test period of processors) and T= 961.53us. The total
number of tests per processor will be equal to 130.

For each self-test policy, we consider two different test
lengths: L1= 0.15ms and L2= 0.3ms that are approximately
the test length of a MIPS processor with a SBST approach
[21]. Note that this value can be back-annotated from
ATPG tools and fault simulation [20] after gate level
synthesis. Conversely, the designer may explore the impact
of different self-test lengths and may express an acceptable
maximum test length to test engineers, as an input. We
perform several simulations. Each simulation corresponds
to a triplet (self-test policy, architecture load, test length).
The 1st policy corresponds to the one described in Section
5.1, the 2nd one to Section 5.2 and 3rd one to Section 5.3.

Figures 2.a) and 2.b) show the application duration
overhead in % over the architecture load relatively to the
three different self-policies of Section 5. Figure 2.a) shows
the results for short tasks and the two different test lengths
while Figure 2.b) considers long tasks. The 1st self test
policy causes a highest penalty than the 3rd one. The
difference increases significantly with long tasks. When the
architecture load remains below 85%, the overhead remains
almost constant. When an application task is pre-empted by
a test task, the control finds most of the time a free
processor on which it can migrate the application task.
Above 85%, the overhead grows with a steeper slope. The
number of idle states is not enough for mitigating the effect
of the preemption, thus causing a higher penalty.

Figures 2.c) and 2.d) show the total number of preemption
occurrences. Figure 2.c) considers short tasks while
Figure 2.d) considers long ones. When no test runs, the
number of preemptions is zero. In both figures, whatever
the self-test policies, the number of preemption occurrences
increase with the load value. The preemption of a task with
a high priority (due to test) implies most of the time, the
preemption of the one with the lowest priority. This
phenomenon is exacerbated when the number of tests per
task increases with the architecture load growth.

For an identical test length in each policy, the 1st policy
causes the highest pre-emption count while the 3rd policy
causes the lowest one, whatever the task length. In both
figures, the impact of the test length on the pre-emption
count is more significant on long tasks than short ones.
When the duration of tests per task increases, the number of
preemptions increases. This phenomenon is exacerbated
with the architecture load growth.

Figures 2.e) and 2.f) show the fault detection probability of
the architecture (average of the fault detection probability
value of each processor) relatively to architecture load and

self-test policy. The results are computed at the time of the
last test execution (Tn). Figure 2.e) shows the results with
short tasks while Figure 2.f) shows the results with long
ones. For each load value, the vertical bars on the curves
represent the maximum deviation between the average
value and the probability value obtained on the eight
processors.

In both figures, the fault detection probability remains close
to the reference probability (99.9%). The maximum
deviation below the reference is equal to 0.3% (Figure 2.f).
1st self-test policy remains strongly constant. The variations
of the average value over the load and the deviations are
due to the variation of the real test period on each processor
over the time.

In both figures, the 1st policy provides the highest average
fault detection probability than the 3rd one, until a load of
80%. Above this value, the benefit of the 2nd and 3rd
policies is quasi identical. As we can show, long tasks have
a more significant impact on the fault detection probability
than short tasks. We can also show that the length of tests
has a similar effect (not shown here for clarity
considerations). The reason is due to the application
duration overhead relatively to the number of tests. While
the number of tests remain quasi constant, the time
difference between the tests is greater with when long task
(or long test lengths) and so, the time Tn (from eq. 3).

For measuring the trade-off between performance and fault
detection probability, we compute the ratio between the
preemption count and the fault detection probability for
each architecture load (short task length). Figure 3 plots the
obtained ratio over the architecture load for the three self-
test policies, for short tasks. Whatever the architecture load,
we note that the 3rd policy (Priority&Idleness aware policy)
always has the lowest value. For long tasks, the position of
the curves will remain identical, at least with load values
below 80%. As a result, a multiprocessor that periodically
applies a self-test procedure to the different processors in a
way that considers the idle times, task priorities and test
history of processors offers a good trade-off between
performance and fault detection probability.

0

200

400

600

800

1000

1200

30 50 70 90

Aggressive self-test policy

Idleness aware self-test policy

Priority&idleness aware self-

test policy

Figure 3 – (preemption count)/(detection probability)

7. CONCLUSION

In this paper, we described how on-line self-testing can be
controlled in a real-time embedded multiprocessor for non
safety critical applications. We analyzed the impact of three
on-line self-testing policies in terms of performance penalty
and fault detection probability in a simulated asymmetric
architecture. It was shown that a policy that periodically
applies a test to each processor in a way that accounts for
the idle states of processors, the test history and the task
priority offers a good trade-off between the performance
and fault detection probability. The evaluations performed
in this paper considered actually the particular case of an
asymmetric architecture with predefined scheduling and
allocation policies. However, the principle and
methodology can be generalized to other multiprocessor
architectures.

8. REFERENCES

[1] Intl Sematech, “Critical Reliability Challenges for the International
Technology Roadmap for Semiconductors”, 2003.
[2] G. Gielen et al., “Emerging yield and reliability challenges in
nanometer CMOS technologies”, DATE'08, pp. 1322-1327, 2008.
[3] Shekhar Borkar, “Microarchitecture and Design Challenges for
Gigascale Integration”, Int. Symp on MicroArch., 2004.
[4] Shekhar Borkar et al., “Parameter variations and impact on circuits
and microarchitecture”, DAC’03, pp. 338-342, 2003.
[5] C. Constantinescu, “Impact of deep submicron technology on
dependability of VLSI circuits”, IEEE DSN, pp. 205-209, 2002.
[6] N. Kranitis et al., “Optimal Periodic Testing of Intermittent Faults In
Embedded Pipelined Processor Applications”, DATE '06, pp. 1-6, 2006.

[7] Victor P. Nelson, “Fault-Tolerant Computing: Fundamental
Concepts”, Computer, vol. 23, pp. 19-25, 1990.
[8] Philip M. Wells et al., “Adapting to intermittent faults in multicore
systems”, ASPLOS '08, pp. 255-264, 2008.
[9] M. Prvulovic et al., “ReVive: cost-effective architectural support for
rollback recovery in shared-memory multiprocessors”, Int. Symp. on
Computer Architecture, pp. 111-122, 2002.
[10] D. Ernst et al., “Razor: a low-power pipeline based on circuit-level
timing speculation”, MICRO 36, pp. 7-18, 2003.
[11] T.M. Austin, “DIVA: a reliable substrate for deep submicron
microarchitecture design”, MICRO'99, pp. 196-207, 1999.
[12] A. Meixner etal., “Argus: Low-Cost, Comprehensive Error Detection
in Simple Cores”, IEEE MICRO, vol. 28, pp. 52-59, 2008.
[13] Smitha Shyam et al., “Ultra low-cost defect protection for
microprocessor pipelines”, ASPLOS’06, pp. 73-82, 2006.
[14] Renesas Tech., “Semiconductor Reliability Handbook”, Nov. 2008.
[15] Kypros Constantinides et al., “Architecting a reliable CMP switch
architecture” ACM Trans. Archit. Code Optim., vol. 4, 2007.
[16] Y. Li, S. Makar, and S. Mitra, “CASP: Concurrent Autonomous
Chip Self-Test Using Stored Test Patterns”, DATE'08, pp. 885-890, 2008.
[17] H. Inoue, Yanjing Li, and S. Mitra, “VAST: Virtualization-Assisted
Concurrent Autonomous Self-Test”, ITC 2008, 2008, pp. 1-10.
[18] M. Nicolaidis and Y. Zorian, “On-Line Testing for VLSI - A
Compendium of Approaches”, J. Electron. Test., vol. 12, pp. 7-20, 1998.
[19] Patrick Girard, “Survey of Low-Power Testing of VLSI Circuits”,
IEEE Design and Test of Computers, vol. 19, pp. 82-92, 2002.
[20] Samiha Mourad and Yervant Zorian, “Principles of testing electronic
systems”, Wiley, ISBN 978-0-471-31931-3, 2000.
[21] D. Gizopoulos et al., “Systematic Software-Based Self-Test for
Pipelined Processors”, Trans. on VLSI Sys., vol. 16, pp. 1441-1453, 2008.
[22] J.L. Hennessy et al., “Computer architecture: a quantitative
approach”, Morgan Kaufmann, 2003.
[23] J. Hildebrandt et al., “Scheduling coprocessor for enhanced least-
laxity-first scheduling in hard real-time systems”, EUROMICRO, pp. 208-
215, 1999.
[24] S.Y.H. Su et al., “A Continuous-Parameter Markov Model and
Detection Procedures for Intermittent Faults”, IEEE Transactions on
Computers, vol. C-27, pp. 567-570, 1978.

a) b) c)

d) e) f)

Figure 2 – Application duration overhead (%) vs architecture load for short a) and long b) tasks. Preemption count for a) short and b) long tasks.
Fault detection probability of architecture (%) for e) short tasks and f) long tasks.

