ANALYSIS OF ON-LINE SELF-TESTING POLICIES FOR REAL- TIME EMBEDDED
MULTIPROCESSORS IN DSM TECHNOLOGIES

O. Heron', J. Guilhemsang’

N. Ventroux

A Giulieri™

(*) CEA, LIST, Embedded System Reliability LaboratoP¢; 94, Gif-sur-Yvette, F-91191, France
(**) CEA, LIST, Embedded Computing Laboratory, PC &4f-sur-Yvette, F-91191, France
email: olivier.heron@cea.fr
(***) LEAT, Univ. de Nice-Sophia Antipolis, Valbonn&;-06560, France. email: alain.giulieri@ polytechogir

ABSTRACT

Advances in DSM technologies have a negative impagoh
yield and reliability of digital circuits. On-line self-testing is an
interesting solution for detecting permanent and itermittent
faults in non safety critical and real-time embeddé
multiprocessors. In this paper, we describe and elizate three
scheduling and allocation policies for on-line selfesting. We
show that a policy that periodically applies a tesprocedure to
the different processors in a way that considers ld times, test
history of processors and task priorities offers good trade-off
between performance and fault detection probability

1. INTRODUCTION

ITRS Roadmap [1] predicts that integrated circylts)
reliability will become a critical task for semiadmctor
industry in Deep Sub-Micron (DSM) technologies (sub
45nm). Reliability is defined as the ability of Bhto work
without a failure and within given performance lisnfor a
specified time and environment [2]. New materiaigl a
smaller devices provide benefits for performancewer
consumption and transistor density but have a hegat
impact on yield and reliability. Many billions ofansistors
in ICs will be unusable due to extreme static \tane. ICs
will also encounter frequent intermittent erroreda their
increasing sensitivity to external neutrons, alphaticles,
transient voltage variations (such as IR drop) jamdtion
temperature variations (such as thermal hotsp8ig)][5].
Transistors, vias / contacts and wires will age degrade
faster over time, causing intermittent errors daoethe
parameter variations and even more permanent g6hrs
thus shortening IC lifetime. For all the above ores
reliability becomes a key issue in architecturdgies

Design techniques using fault tolerance concepls twe
overcome yield and reliability related errors igithl IC. A
fault-tolerant IC may go through one or more of the
following stages: error masking, error detectiomrore
correction / containment, IC repair / reconfiguratiand IC
recovery [7]. Several fault tolerance techniques fo
multiprocessors were proposed in the past, sudB]g§.
Most of these solutions do not address explicittyore
detection; they rather focus on the recovery procedin

addition, most of them are not suitable for ourpoge that
concerns non-safety critical and real-time applbcet such

as Media and Telecommunication in embedded
multiprocessors. In this context, the multiprocessather
integrate hundreds of RISC processors that havess |
complex micro-architecture (scalar pipeline and -non
multithreading support). All the processor coree ar
occupied by a SW task most of the time (no spaesetore
optimizing performance and power efficiencies (miv/u
and Gops/s/ufi.

The design of a cost-effective error detection tsmufor
embedded multiprocessors still appears to be am ope
problem and hence a critical focus in DSM technigleg
Some past works focused on the on-line error detect
problem in single RISC processors. “Razor” [10joafi
detecting and recovering from delay errors, with #id of
special pipeline latches. “Diva” [11] and “Argus’ld]
integrate checkers in the micro-architecture fotecking
control and data flow errors. The “Bulletproof dipe”
[13] inserts BIST modules for testing faults in thipeline
stages during stall times. These solutions preerh
committing most or all errors but to the detrimefitnicro-
architecture design effort, area and power consiompt
overheads.

Real-time and non safety critical applications ab meed
on-line error detection solutions that would tr&bk/ errors
cycle by cycle in the most aggressive scenarioveaely,
if an active error escapes from the faulty resoumoe
propagates through the architecture, then it mayaleays
cause a fatal multiprocessor failure. Such apjtinatcan
naturally tolerate the occurrence and propagatfoone or
more undetected errors, such as infrequent congputin
errors. Depending on the expected reliability lewvble
circuit may only be checked at boot time and sammesi
during the execution. A boot checking mainly addess
permanent errors while a checking during executian
also detect intermittent errors that can causetbusé
computing errors or fatal errors (e.g. program ¢euerrors
in a processor).

As an alternative to the solutions listed abovelima self-
testing seems to be an interesting candidate gmafittwell
with our error detection requirements. Test is ewmn
technique used for detecting faults in IC [20]slgenerally

applied during manufacturing process (offline tegpl at
boot time or periodically during the IC lifetimeoirthe last
case, we talk about on-line self-testing for whiich test is
automatically applied by the circuit itself [18].hi§
approach requires a lower design effort, inducestcarea
and power consumption overheads and can detectateve
fault models with a high coverage, but in detrimeinérror
detection latency [16]. Under test mode, the cirdai
configured in a way where the resources under dest
logically isolated from the rest of the system. Wlige test
is performed concurrently with the application, tlager
should continue its execution on the remaining usses.
The control part of a multiprocessor architecturewd be
able to dispatch task applications and tests obver t
architecture in a way that minimizes the perforneanc
penalties and maximizes the test efficiency.

In this paper, we explain how on-line self-testicen be
integrated in an embedded multiprocessor architecad

detriment of performance and power efficiencies. aln
general way, most of papers address the integraimh
application problems of the on-line self-testingp ®ur

knowledge, there are no papers that address dkplice

questions: at which rate the test should be applikdd

which processor is chosen at each test time? $npdper,
we focus on the configuration and scheduling alatation

policies for on-line self-testing in real-time erdded

multiprocessors.

The design of an optimal on-line self-testing tegha for
embedded multiprocessors should offer a good toéide-
between fault coverage, fault detection probabilidw
design effort and performance and power consumption
overheads. Fault coverage is the number of fahl &
given test pattern sequence can detect among the to
number of possible faults, for different fault mtsdg20].
High fault coverage for several fault models insesathe
likelihood for detecting a multiprocessor failuleit results

we describe three possible self-test scheduling andn a long test pattern sequences. On-line selfagesthould

allocation policies for detecting intermittent goekmanent
faults. With the help of simulation, we evaluate tmpact
of these policies on performance and fault detactio
probability in an asymmetric multiprocessor.

The paper is organized as follows. In Section 2, we

motivate our approach. In Section 3, we describe th
principles of on-line self-testing in an embedded
multiprocessor. In Section 4, we detail a self-test
configuration. Section 5 describes three self-fesicies.
Section 6 presents the results about performanddaart
detection probability for an asymmetric architeetur
Finally, Section 7 concludes the paper.

2. MOTIVATIONS

In a multiprocessor context, on-line self-testimmgists in
testing frequently a sub-part of the architectutdlevthe
rest of the resources still run the jobs, conculyehi and
al. [16] propose a solution for detecting stucksatl delay
faults in OpenSPARC T1 multiprocessor. High quaiégt
patterns are generated (offline) and stored in darmeal
non volatile memory. An HW support automaticallads
and applies the test patterns to every core peabigiwhile
others remain in a normal mode. In addition, theppsed
solution enables the prediction and diagnosis offi Shard”
failures. One limitation the solution is that thdp not
address explicitly the scheduling and allocationbfgms

address both permanent and intermittent faults. I&Vhi
permanent faults are mainly due to aging phenomsnoh
as NBTI, HCI, TDDB, etc. [14], intermittent or tewnary
faults are more complex failure modes. Such faales
caused by the extreme variation of timing margihong
paths above the limit thus causing a timing violatof the
register setup and hold times [3][4][15]. In verySH
technology, the root cause may be due to a transien
variation of the junction temperature of the preoceshat
reaches a certain value (hotspot) in a aggresgieeating
mode (voltage, frequency) or a transient variatdrthe
power supply voltage resulting from the power-on aof
neighbour processor that shares the same power (iRe
drop). Note that a test can only detect reprodadialilts,
thus transient faults cannot be addressed by it.

The fault detection probability at time t is thelpability of
detecting an active fault with any of the n tegiplied till
time t. The probability for detecting a fault varie
depending on the test period and both activatiomtitun
and occurrence frequency probabilities of the fqule
assume a high test quality). As an example, favengfault
detection probability, an intermittent fault with law
activation duration probability and a low occurrenc
frequency probability results in a lower test pdribhan a
fault with a high activation duration probabilithé a low
occurrence frequency probability — that tends teave as a
permanent fault. In [6], authors present an arwiti
solution for designing the optimal on-line selftieg

for decreasing the performance and power penaltiesperiod in uni-processor for detecting a processilure

induced by the test. In [17], authors reserve arespa
processor for test purpose so as, when the opgrastem
activates a test session on a processor thatngngia task,
the task is preempted and migrated to the spamegsor.
This solution can
depending on the preemption and migration costsdbtite

reduce the performance penalty

with a predefined fault detection probability.

HW design effort for integrating on-line self-tegi
resources in the architecture is relatively minianadl quasi
non intrusive in the processor core design. Acpuétie test
resources used for manufacturing test can be -siseh
as scan chains, JTAG, BIST, test pattern decomipress

3. ON-LINE SELF-TESTING IN
MULTIPROCESSORS

and test patterns [16][18]. A global test contmoirould be
built on the top of these features for selectivanfiguring
and activating the needed test resources dependirthe
scheduling and allocation decisions. In the papee,
especially focus on the test of processors. It ban
performed with hardware-based self-test (HBST) gisin
Built-in-self-test (BIST) techniques and JTAG suppor
software-based self-test (SBST) techniques [21]e Bw
paper size limitation, both test implementation and

We address the problem of on-line self-test scliegl#nd
allocation policies in an asymmetric architectiMete that
the principles we will develop in this section che
extended to any multiprocessor architecture. This
architecture is composed of P processors with local
memories, a shared memory and a programmable rietwor

application problems will be not addressed herdaeNioat
the test of processors with SBST techniques candatect
faults in the resources used by test (memories an
interconnect) but with a lower fault coverage.

Performance and power consumption overheads cdnysed
the test require an important attention. Low-poaemare
test pattern generation and design-for-test tecienican
reduce power consumption and temperature impa&is [1
Relatively to energy consumption, the duration t#si task
is often lower than that of application tasks. e paper,
we explicitly focus on the application performameeblem
even though we will consider power consumption [enob
in the next work steps.

On-line self-testing can be viewed as a single altipie
SW tasks that can run periodically and possibly
concurrently with a user application. A test task |
characterized by a length (number of cycles) apdrind at
which the test task should be applied. Compared to
running application task, a running test task wél never
stopped before its normal end and it will neverrshae
resources under test with the other tasks. Moreabher
resources under test should be logically isolatethfthe
rest of the system for preventing the propagatibrarm
active error.

Different “application vs. test” execution scenarigan
appear, depending on the required reliability letalstly,
the test tasks can be only executed at boot tirtleout any
user application. Secondly, the test tasks carxbeuted at
runtime as well, but after stopping the user apfitho.
Thirdly, as an alternative to the previous one tésé can be
executed concurrently during the user
execution. The last scenario enables a higher ¢awnttrage
than the two first ones because it enables thectiteteof
intermittent faults that can cause bursts of comgutrrors
or fatal errors in the control. Compared to theosec
scenario, the last one also reduces the performaemalty
because the application continues its executioan af it
will run in a degraded mode. In that case, thettssts have
to be scheduled and allocated to processors camilyrr
with the user application. The performance penaltly
depend on the rate at which processors will bedefstr the
highest fault detection probability and the tesigth. Low
test period and length values imply a low perforosan
penalty but also low fault detection probabilitydafault
coverage levels.

such as a multi-bus, that allows any processoedd/write
ata in the shared memory or peripherals with antidal
ime (uniform memory access).

A centralized control part manages tasks execution,
memory allocation and communication between thkstas
Only one task can run on a processor at a timar(uli-
threading support). The control is able to preeaptnning
task and even more it is able to migrate a runtasg from
one processor to another one, especially for nee-and
power consumption considerations. In this paper,ony
consider the case of data-flow applications. Howethés
limitation does not restrict the scope of the failog
demonstration. An application control graph is kecih the
control part. It represents the data / control ddpacies
between the tasks. A task is a sequence of ingtnscthat
can run to completion independently of other tagksask
is either in the suspended state (not scheduled)rorable
state (task is ready to run) or running states(iunning on
a processor core).

We now describe the principle of the on-line seffting
control in this type of architecture. It goes thgbutest
configuration, test task scheduling and allocatimmg test
observation. First of all, a Test configuration dtion sets
the length and period values of the test task. fémod
value is derived from the expected fault detection
probability required by the application, as it wile
explained in Section 4. The test length can be iguen
value for all of the processor cores or a diffeneaitie for
each one. The test length can be predefined ajrdésie,
with the help of ATPG and fault simulation tool9]2In

application addition, the value can be updated during theirifetof the

architecture. In that case, the value is a paranwft¢he
control part that is loaded at boot time.

At each control tick period, a Scheduling function
determines the priority between the runnable tasidthe
running tasks. If one or more test tasks are ruendbe
function can set a higher priority to the test (aslor a
lower priority than the application tasks, depegdim the
implemented policy. In the former case, a test taikbe
next allocated to a processor. One consequendeaisat
runnable application task that might have run isehe
delayed and will be re-scheduled at the next tietigal. In
the latter case, the test task will be delayedht riext

control ticks. This will decrease the likelihood fitetecting
an active fault.

Thirdly, an Allocation function allocates the HWsoeirces
to the scheduled tasks from the task having théesig
priority to the lowest. The number of allocatedktass
equal to the number of processor cores (fault-fréde
policy is based on a simple algorithm, as followe
allocator first selects the task having the higlpeigtrity. If
the task was not running, it tries to allocateoita free
processor, if available. If no free processor igilable, the
allocator preempts the running task that has theedo
priority and loads the candidate task. The algoritls
illustrated in Figure 1.a. Relatively to the takg allocator
does not allocate it to a processor already urer The
allocation policy should distribute the test taskeer the
different processors in a way that enables the Saoné
detection probability between the processors. Noat it
should not allocate it to a processor core that tested at
the previous test period. The function will alsaizol the
logical isolation of the resources under test ftbmrest of
the system and the test application (test prograchdata
loading in memories, test application start/stofs). a
general way, the Allocation function also allocatesmory

The value of the test period, Tepends on the expected
fault detection probability. The analytical equatiohthis
probability is derived in [6][24]. Here, we only remarize
the main steps. Firstly, we define a processaur@imodel.

A processor subject to faults can be either in atpey or
faulty state, depending on whether the fault is/aatr not.
We assume that the occurrence of the first faulses a
processor failure. The two-state continuous-paramet
Markov model allows predicting future states ofyatem
with only the knowledge of the present state. Tperating
and faulty states are named state 0 and statsfgeatévely.
Let A and p denote the rates of leaving state O ane %tat
respectively. The mean time during which the pramess
operational (faulty) has an exponential distribatwith the
parameters A/ (1/u). 1A represents the occurrence
frequency probability and 1/u represents the aiitingime
probability of a fault (faulty state). The Markovodel
defines the transition probability;&) from the state i to the
state j after at a time t, as follows:

A

0= et ec. 1

Poo(t) =1- Py, (1) [eq. 2]
Where Bt) is the probability to remain in the operating

segments and sets the predefined processor powee mo state (0). Additionally, the steady-state probbdi of
(voltage & frequency) that can be viewed as task being at state 1 (0) for an indifferent observatione is

parameters, as well.

Fourthly, when the test normally ends, a signal iogm
from the processor under test triggers the Testrohtion

function that gathers and analyzes the test restilie

control part of the architecture will next reallezathe

resources under test to the application tasks (PreSdlt)

or applies confinement / repair actions (FAIL ré&saind

even more recovering actions (out of scope ofghjer).

4. SELF-TEST CONFIGURATION

In this section, we define the self-test configorathat is

an important parameter for reliability control. f&elst

configuration determines the period at which thskd$a
should be scheduled for execution and the lengtheofest
which is proportional to the number of test patern

As a starting point of our work and for reader camience,
we assume that all the processors are identicaively to
the probability of a fault occurrence, independentl the
way the application is dispatched in the architectAll the
processors have to be tested with identical tesbghend
length. Therefore, we consider that only one pécidest
task is scheduled at a time. The rate at whichesbietask is

=) +/1(”° :%ﬂx)

Let's now denote Jas the begin time of thé"rtest and
AT,= T, — T,1 as the time interval between th& and n-1'
tests. The fault detection probability at timg dan be
expressed as follows. It is the probability thatfaalt
becomes active during the time interval [0,] &nd the
probability that the active fault is detected wathy of the n
tests applied since time 0:

d(r,) =p-m e] {1_ ” Poo (AT,)} e4- 3

Where the first term represents the probabilityt ttree
processor reaches the faulty state (state 1) at fii
assuming it was in the operating state at timeh@. Second
term is the probability of detecting a fault withyaof the
n tests, assuming that the fault coverage of aigadeally
equal to 100%.

5. SELF-TEST POLICIES

Relatively to the self-test configuration descriladxve, we
derive three typical self-test policies that offdifferent
trade-offs between the performance penalty andt faul

scheduled depends on the expected fault detectionyetection probability. Let's denote, Bs the tick period of

probability on each processor. Let's ca)l the ideal test
period of each processor for a given detection gdviity

objective. The period T of the test task will beuaqto

T,/P, where P is the total number of processors.

the control part i.e. the period at which all of ttasks are
scheduled and allocated (application and test atlet's

denote T as the period at which a test task is wake
(runnable state). T is necessarily an integer pialtf T,.

5.1. Aggressive self-test policy

This policy periodically applies a test to the difint

processors with a constant and identical periodieyal
whatever the processor usage. This strategy geasuthe

expected period for all of processors to the detinof the

performance.

At each tick T= a*T (integer a > 1), a test task is in a
runnable state and must be allocated to a processor

according to a round-robin policy. For that, letnsider
that the scheduler provides an allocation tablsizef P that
stores the application tasks to be allocated taxgswors.
The tasks are ordered from the highest priorith&lowest
priority by the scheduler. If processor ‘i' must tested, the
application task stored in th8 table index is replaced by
the test task. Next, all non test tasks are (legated to the
P processors. If the replaced task in the table rwaising,
then it is pre-empted; its execution is stopped #&sd
context is saved before loading the test taskhdftask was
only in a runnable state, then it will be re-scHedun the
next control tick T.

Figure 1 illustrates a scenario example with
processors when no test is applied (Fig 1.b) anehvehtest
task is allocated at a rate of T (Fig 1.c). Notat tine real
test period of each processqyis equal to T*P, where P is
the number of processors. For preventing the pratiem
of application tasks with a high priority, the apption
tasks in the table are re-ordered according toetehistory
of the processors. The application task with thghést
priority is stored in the table index correspondiogthe
most recently tested processor, and so on.

5.2.ldleness aware self-test policy

Compared to the previous scenario, this policy tisesdle

state of the processors to execute a test taskrebefo

preempting a running application task.

The control checks if the allocation table containsempty
index (e.g. index j). If there is one, it next ckedf the
corresponding processor j was already tested gimezs in
the idle state. Actually, let's assume that aniappibn only
uses P-1 processors among P. TﬁepR)cessor is always
free (idle state). If no verification is performeten it will
happen that the free processor will be always desteile
the others will remain untested. If no free prooegan be
found, the test task is inserted in the allocatiable

according the procedure described in 5.1. Figumet 1.

illustrates a scenario example with three processoes.
Note that the application task allocation is heredified
according to the description of Section 5.1.

The real test period of each processor may vary tve.
The time difference between two consecutive te$ta o
same processor will be greater or equal

three

to Tp.

Consequently, the resulting fault detection prolighinay
differ from one processor to another one. In tlesnario,
the test of a free processor may be also extended t
performance and power characterizations.

Test task?

Y
Self-test policy
(Section 5)

Preempt the task with
the lowest priority

SR R T:PZ--—-:;

c) d
Figure 1 — a) Allocation algorithm principle. b), § and d) Examples of
self-test policy application. Blue blocks represertest tasks while the
other blocks are application tasks.

5.3.ldleness&Priority aware self-test policy

Compared to the previous policy, the applicatioskta
priorities are considered when the test task isrted in the
allocation table, instead of the round-robin altpon. When
no free processor can be tested, the applicatekwviah the
lowest priority in the allocation table is repladegthe test
task. The assignation of the test task to the psmre
depends on the scheduling policy used for derivimg
allocation table with the ordered application tasks

6. RESULTS

In this section, we compare the impact of the tisedétest
policies relatively to the performance penalty atie
resulting fault detection probability of each preser. The
evaluations are made with a functional simulatitaifprm
that simulates an asymmetric multiprocessor conthbage
eight MIPS-like Instruction Set Simulators [22] ard
control part that implements the Enhanced Leastty-ax
First scheduling policy [23]. The architecture i@dalled
with SystemC language. The simulator accounts fier t
number of executed instructions in each processdrtiae
number of preemptions.

The analysis is performed with a virtual applicatithat
allows us to control the architecture load from 3@85%.
It is the average percentage of the occupation Ibf a
processors by the application tasks (without tesér the

time. For a given application duration equal to &

consider two types of task lengths: a long taskgtlen
(125ms) that corresponds to 8 tasks per processbraa
short task length (10 ms) that corresponds to &6kstper

processor. We consider the case a fault charaetetiy
HA=10 (u= 0.1m3). Application requires that this type of
fault must be detected with a probability of 99.9%the
end of execution. From equation 3 (Section 45 7.69ms
(ideal test period of processors) and T= 961.58hs.total
number of tests per processor will be equal to 130.

self-test policy. The results are computed at ithe bf the

last test execution (). Figure 2.e) shows the results with
short tasks while Figure 2.f) shows the resultshviditng
ones. For each load value, the vertical bars orctiees
represent the maximum deviation between the average
value and the probability value obtained on thehteig

. . . rocessors.
For each self-test policy, we consider two differésst P

lengths: L1= 0.15ms and L2= 0.3ms that are appratéin
the test length of a MIPS processor with a SBSTragh
[21]. Note that this value can be back-annotatemnfr
ATPG tools and fault simulation [20] after gate dev
synthesis. Conversely, the designer may exploréntpact
of different self-test lengths and may expresscoeptable
maximum test length to test engineers, as an M.
perform several simulations. Each simulation cqoesls
to a triplet (self-test policy, architecture loadst length).

t
The F policy corresponds to the one described in Sectlonso%. Above this value, the benefit of th&? znd ¥

5.1, the 2'one to Section 5.2 and®ne to Section 5.3. policies is quasi identical. As we can show, losgks have
Figures 2.a) and 2.b) show the application durationa more significant impact on the fault detectionlability
overhead in % over the architecture load relatiielyhe than short tasks. We can also show that the leoigtésts
three different self-policies of Section 5. Fig@a) shows has a similar effect (not shown here for clarity
the results for short tasks and the two differest tengths ~ considerations). The reason is due to the applitati
while Figure 2.b) considers long tasks. ThHé sklf test duration overhead relatively to the number of tegthile
policy causes a highest penalty than tH& dhe. The the number of tests remain quasi constant, the time

In both figures, the fault detection probabilityn&ns close
to the reference probability (99.9%). The maximum
deviation below the reference is equal to 0.3%UfEd.f).

1% self-test policy remains strongly constant. Theat@ns

of the average value over the load and the deunmtare
due to the variation of the real test period orhgaocessor
over the time.

In both figures, the *Lpolicy provides the highest average
fault detection probability than thé®®ne, until a load of

difference increases significantly with long tasikéen the
architecture load remains below 85%, the overheathins
almost constant. When an application task is prptethby
a test task, the control finds most of the timereef
processor on which it can migrate the applicatiaskt
Above 85%, the overhead grows with a steeper sitpe.
number of idle states is not enough for mitigating effect
of the preemption, thus causing a higher penalty.

Figures 2.c) and 2.d) show the total number of pp®n
occurrences.
Figure 2.d) considers long ones. When no test rthres,
number of preemptions is zero. In both figures, tewer
the self-test policies, the number of preemptiocuoences
increase with the load value. The preemption @fsk tvith
a high priority (due to test) implies most of thend, the
preemption of the one with the lowest priority. §hi
phenomenon is exacerbated when the number of iests
task increases with the architecture load growth.

For an identical test length in each policy, tfiepblicy
causes the highest pre-emption count while tAep@icy
causes the lowest one, whatever the task lengtiboth
figures, the impact of the test length on the prpt#on
count is more significant on long tasks than slooes.
When the duration of tests per task increasesjuhwber of

preemptions increases. This phenomenon is exaedrbat

with the architecture load growth.

Figures 2.e) and 2.f) show the fault detection philiiy of
the architecture (average of the fault detecticsbability
value of each processor) relatively to architectaesl and

Figure 2.c) considers short tasks ewnhil

difference between the tests is greater with wieg task
(or long test lengths) and so, the time Tn (from3)q

For measuring the trade-off between performancefaultl
detection probability, we compute the ratio betwdka
preemption count and the fault detection probabildr
each architecture load (short task length). Figupéots the
obtained ratio over the architecture load for threé self-
test policies, for short tasks. Whatever the aechitre load,
we note that the3policy (Priority&Idleness aware policy)
always has the lowest value. For long tasks, tis#ipo of
the curves will remain identical, at least with dogalues
below 80%. As a result, a multiprocessor that pkcaly
applies a self-test procedure to the different @geors in a
way that considers the idle times, task prioritesl test
history of processors offers a good trade-off betwe
performance and fault detection probability.

1200

——— Aggressive self-test policy
1000 +—

—Idlenessaware self-test policy
800 +—
Priority&idleness aware self-

600 +— test policy

400 /

200

0

30 50 70 90
Figure 3 — (preemption count)/(detection probabiliy)

7. CONCLUSION

In this paper, we described how on-line self-testian be
controlled in a real-time embedded multiprocessornion
safety critical applications. We analyzed the intdc¢hree
on-line self-testing policies in terms of performarpenalty
and fault detection probability in a simulated asyetric
architecture. It was shown that a policy that p#idally
applies a test to each processor in a way thatuatedor
the idle states of processors, the test history thadtask
priority offers a good trade-off between the perfance
and fault detection probability. The evaluationsfgrened
in this paper considered actually the particulagecaf an
asymmetric architecture with predefined schedulargl
allocation policies. However, the principle and
methodology can be generalized to other multipmaes
architectures.

8. REFERENCES

[1] Intl Sematech, “Critical Reliability Challenges ftire International
Technology Roadmap for Semiconductors”, 2003.

[2] G. Gielen et al., “Emerging yield and reliabilithallenges in
nanometer CMOS technologies”, DATE'08, pp. 1322712D08.

[3] Shekhar Borkar, “Microarchitecture and Design Grades for
Gigascale Integration”, Int. Symp on MicroArch. 020

[4] Shekhar Borkar et al., “Parameter variations angaith on circuits
and microarchitecture”, DAC'03, pp. 338-342, 2003.

[5] C. Constantinescu, “Impact of deep submicron telclyyo on
dependability of VLSI circuits”, IEEE DSN, pp. 2@®9, 2002.

[6] N. Kranitis et al., “Optimal Periodic Testing oftémmittent Faults In
Embedded Pipelined Processor Applications”, DATE {ip. 1-6, 2006.

[7] Victor P. Nelson, “Fault-Tolerant Computing: Fundartal
Concepts”, Computer, vol. 23, pp. 19-25, 1990.

[8] Philip M. Wells et al., “Adapting to intermittenadits in multicore
systems”, ASPLOS '08, pp. 255-264, 2008.

[9] M. Prvulovic et al., “ReVive: cost-effective arabitural support for
rollback recovery in shared-memory multiprocessonisit. Symp. on
Computer Architecture, pp. 111-122, 2002.

[10] D. Ernst et al., “Razor: a low-power pipeline basedcircuit-level
timing speculation”, MICRO 36, pp. 7-18, 2003.

[11] T.M. Austin, “DIVA: a reliable substrate for deeptsnicron
microarchitecture design”, MICRO'99, pp. 196-20999.

[12] A. Meixner etal., “Argus: Low-Cost, Comprehensivedt Detection
in Simple Cores”, IEEE MICRO, vol. 28, pp. 52-5908.

[13] Smitha Shyam et al., “Ultra low-cost defect pratact for
microprocessor pipelines”, ASPLOS’06, pp. 73-82)&0

[14] Renesas Tech., “Semiconductor Reliability Handbobldv. 2008.
[15] Kypros Constantinides et al., “Architecting a relea CMP switch
architecture” ACM Trans. Archit. Code Optim., v4|.2007.

[16] Y. Li, S. Makar, and S. Mitra, “CASP: Concurrent tAnomous
Chip Self-Test Using Stored Test Patterns”, DATEf)& 885-890, 2008.
[17] H. Inoue, Yanjing Li, and S. Mitra, “VAST: Virtuaation-Assisted
Concurrent Autonomous Self-Test”, ITC 2008, 2008, 1-10.

[18] M. Nicolaidis and Y. Zorian, “On-Line Testing for L&l - A
Compendium of Approaches”, J. Electron. Test., ¥8|.pp. 7-20, 1998.
[19] Patrick Girard, “Survey of Low-Power Testing of VLEircuits”,
|EEE Design and Test of Computers, vol. 19, pp9822002.
[20]Samiha Mourad and Yervant Zorian, “Principles aftitey electronic
systems”, Wiley, ISBN 978-0-471-31931-3, 2000.

[21] D. Gizopoulos et al., “Systematic Software-Basedf-Best for
Pipelined Processors”, Trans. on VLSI Sys., vo).d6 1441-1453, 2008.
[22] J.L. Hennessy et al, “Computer architecture: a ntjtsive
approach”, Morgan Kaufmann, 2003.

[23] J. Hildebrandt et al., “Scheduling coprocessor dohanced least-
laxity-first scheduling in hard real-time systemEJJROMICRO, pp. 208-
215, 1999.

[24] S.Y.H. Su et al., “A Continuous-Parameter Markov ddo and
Detection Procedures for Intermittent Faults”, |EHEansactions on
Computers, vol. C-27, pp. 567-570, 1978.

1400

T T T
olicy 1-12 =t olicy 1 - 12
&)Iicij 2-12 golic))/’ 2-12
policy 3 - 12 policy 3 - [2 1200 i
g |- policy 1-11 4 g | policy1-11 -
policy 2 - 11 policy 2 - 11
policy 3 - 11 policy 3 - 11 1000 i
& 1 °© | 800 B
4 L 14 | 600 i
_— e 400 g
2 - 4 2 4
B 200 =
0 I i L I I I I I I 0 | | | | | |
30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100
a) b) ©)
e - poems = " Policy 1 - 11 ~ ! ‘ ' ! Policy 1 - |1 b |
- 12=0. olicy 1-11 —+— -
policy 2 - [2=0.3ms ==e=- 99.95 - Ponc‘y’ 2-1 =ewee - 9995 - Ppolicy2-|{ ==mes N
1200 Y - L Policy 3-11 olicy 3 -1 weetees

99.9

1000 1
99.85
800
99.8 -

600 99.75

400 97 |-

200 7 99.65 -

99.6 L 1 L

- 99.85
[

-t

- 99.8

=

- 99.75

9
{
\
\
S
| |

[SR
L

- 99.65 -

[S ——

I I 1 99.6 L I I

40

50

60 70

d)

80 920 100 30 40 50 60

©
o

!
70 80 90 100 30 40 50 60 70 80 100

e) f)

Figure 2 — Application duration overhead (%) vs arditecture load for short a) and long b) tasks. Premption count for a) short and b) long tasks.
Fault detection probability of architecture (%) for e) short tasks and f) long tasks.

