
SESAM: an MPSoC Simulation Environment for

Dynamic Application Processing

N. Ventroux, A. Guerre, T. Sassolas, L. Moutaoukil, G. Blanc, C. Bechara and R. David

CEA, LIST,

Embedded Computing Laboratory,

91191 Gif-sur-Yvette CEDEX, France

Email: nicolas.ventroux@cea.fr

Abstract—Future systems will have to support multiple and
concurrent dynamic compute-intensive applications, while re-
specting real-time and energy consumption constraints. With the
increase in the design complexity of MPSoC architectures that
must support these constraints, flexible and accurate simulators
become a necessity for exploring the vast design space solutions.
In this paper, we present an asymmetric MPSoC simulator
environment, named SESAM. This tool can be used for the
architecture exploration and optimization, and the design of a
complete MPSoC solution for dynamic application processing.
Its performances and capabilities are demonstrated through
a complete MPSoC platform and an implementation of the
component labeling algorithm.

I. INTRODUCTION

The emergence of new embedded applications for telecom,

automotive, digital television and multimedia applications, has

fueled the demand for architectures with higher performances,

more chip area and power efficiency. These applications

are usually computation-intensive, which prevents them from

being executed by general-purpose processors. Architectures

must be able to simultaneously process concurrent informa-

tion flows; and they must all be efficiently dispatched and

processed. This is only feasible in a multithreaded execution

environment. Designers are thus showing interest in a System-

on-Chip (SoC) paradigm composed of multiple computation

resources and a network that is highly efficient in terms of

latency and bandwidth. The resulting new trend in architectural

design is the MultiProcessor SoC (MPSoC) [1].

Another important feature of future embedded computation-

intensive applications is the dynamism. Algorithms become

highly data-dependent and their execution time depends on

their input data, since decision processes and the whole

application are now implemented and must be accelerated.

Consequently, on a multiprocessor platform, optimal static

partitioning cannot exist since all the processing times depend

on the given data. [2] shows that the solution consists in

dynamically allocating tasks according to the availability of

computing resources. Global scheduling maintains the system

load-balanced and supports workload variations that cannot

be known off-line. Moreover, the preemption and migration of

tasks balance the computation power between concurrent real-

time processes. If a task has a higher priority level than another

one, it must preempt the current task to guarantee its deadline.

Besides, the preempted task must be able to migrate on another

free computing resource to increase the performance of the

architecture.

Unfortunately, existing architectures offer only partial so-

lutions to the power, chip area, performance, reliability and

dynamism problems associated with embedded systems. Only

an asymmetrical approach can implement a global scheduling

and efficiently manage dynamic applications. An asymmetric

MPSoC owns a centralized control manager that manages the

application execution.

Designing an MPSoC architecture requires the evaluation

of many different features (effective performance, used band-

width, system overheads...), and the architect needs to explore

different solutions in order to find the best trade-off. In

addition, he needs to validate specific synthesized compo-

nents to tackle technological barriers. For these reasons, the

whole burden lies on the MPSoC simulators, which should be

parameterizable, fast and accurate, easily modifiable, support

wide ranges of application specific IPs and integrate new ones

easily.

In this context, we developed the SESAM tool, to help the

design of new MPSoC architectures. The novelty of SESAM

is its support to asymmetrical MPSoC architectures, which

includes a centralized controller that manages the tasks for

different types of computing resources. The heterogeneity can

be used to accelerate specific processing, but the task migration

is not supported. The best trade-off between the homogeneity,

which provides the flexibility to execute dynamic applications,

and the heterogeneity, which can speed-up the execution, can

be defined in SESAM. Moreover, this tool enables the design

of MPSoCs based on different execution models, which can

be mixed, to find the best suitable architecture according to

the application. In addition, SESAM can support simultaneous

multiple different applications

and mix different abstraction levels, and can take part in a

complete MPSoC design flow.

This paper is organized as follows: Section II covers related

works on MPSoC simulators from both industrial and aca-

demic worlds. Then, section III gives an overview of SESAM,

as well as the supporting programming and debugging tools.

Section IV describes SESAM’s components and focuses on

its infrastructure. Section V illustrates the performance results

obtained by running a real case embedded system application

on a complete MPSoC architecture modeled with SESAM.

Finally, section VI concludes the paper by discussing the

presented work.

II. RELATED WORK

Lot of works have been published before on single-

processor, multiprocessor and full-system simulators. In [3],

the authors illustrate a wide range of simulators, mainly

targeting general-purpose computing. In a more recent work

[4], Jason Cong et al presented an interesting classification

of MPSoC simulators. We will mainly discuss three kinds of

complete MPSoC simulators that exist in the literature and

allow MPSoC exploration: ReSP [5], MPARM [6] and MC-

Sim [4].

The ReSP simulator [5] runs in a Python environment using

reflective capabilities [7] and instantiates SystemC IP cores

with an automatic Python wrapper generation. This solution

speeds up the design space exploration and eases the de-

bugging environment. Their results do not show performance

degradation with respect to a pure SystemC simulation envi-

ronment. Though their solution is optimized for the reliability

analysis, it is not suitable for co-design simulation. The reason

is that the IP signals are wrapped by Python, hence they cannot

be detected by ASIC and FPGA design tools.

MPARM [6] is a SystemC based modeling and simulation

environment for symmetrical MPSoC architectures. It includes

models for ARM processors, AMBA bus architecture, memory

subsystems and multiprocessor synchronization modules. The

main limitation of the simulator is its processing modules.

Each module is composed of an ARM7 core, with its periph-

erals such as an interrupt controller, an UART, a timer, as well

as tightly-coupled instruction and data caches. The processing

module is written in C++ and encapsulated in a SystemC

wrapper. This solution does not allow the exploration of differ-

ent memory system architectures, and hence lacks flexibility.

In addition, MPARM requires AMBA compatible IPs to be

integrated in the design, which requires the development of

specific wrappers.

Finally, MC-Sim [4] allows the simulation of a variety of

NoC architectures, processor cores based on SESC [8], and

L1 and L2 caches. In addition, MC-Sim has a novel approach

to generate and integrate a cycle-true coprocessor models

from C code in the MPSoC simulator. All these modules are

flexibly configured to different positions in the interconnection

network, in order to generate a variety of MPSoC topologies.

However, like all existing MPSoC simulators, it is not possible

to easily integrate a centralized element to allocate tasks to

resources dynamically. The programming model consists in

statically allocating threads onto processors, and do not allow

the design of architectures optimized for dynamic applications.

For the authors’ knowledge, there is no published work on

a simulator that supports asymmetric heterogeneous MPSoC

architectures and allows MPSoC exploration. Simulating a

whole MPSoC platform needs to find an adequate trade-off

between simulation speed and timing accuracy. The Transac-

tional Level Modeling (TLM) approach coupled with timed

communications, is a solution that allows the exploration

of MPSoCs that reflects the accurate final design [9]. Time

information is necessary to evaluate performances and to

study communication needs and bottlenecks. Moreover, co-

simulation is essential to refine the architecture and to design

specific components into such a complex environment.

III. SESAM OVERVIEW

SESAM is a tool that has been specifically built to ease up

the design and the exploration of asymmetric multiprocessor

architectures. It can be used to analyze and optimize the ap-

plication parallelism, as well as control management policies.

This framework is described with the SystemC description lan-

guage, and allows MPSoC exploration at the TLM level with

fast and cycle-accurate simulations. It supports co-simulation

within the ModelSim environment [10] and takes part in the

MPSoC design flow, since all the components are described

at different hardware abstraction levels.

To ease the exploration of MPSoCs, all the components

and system parameters are set at run-time from a parameter

file without platform recompilation. It is possible to define the

memory map, the name of the applications that must be loaded,

the number of processors and their type, the number of local

memories and their size, the parameters of the instruction and

data caches, memory latencies, network types and latencies,

etc. More than 120 parameters can be modified. Moreover,

each simulation brings more than 200 different platform statis-

tics, that help the architect sizing the architecture. For example,

SESAM collects the miss rate of the caches, the memory

allocation history, the processor occupation rate, the number of

preemptions, the time spent to load or save the task contexts,

the effective used bandwidth of each network, etc. As depicted

in Figure 1, a script can be used to automatically generate

several simulations by varying different parameters in the

parameter file. An Excel macro imports these statistics to study

their impact on performances. Thus, the cache parameters, the

network bandwidths, as well as the effective performance of

the architecture, are ones among many features that can be

evaluated to size and explore MPSoCs.

…
#####################################
cache parameters
#
set_size = associativity ("dm","2w","4w"...)
strategy = RANDOM, LRU
write_policy = WRITE_BACK, …
#
######################################
#instruction cache parameters
i_endian 1
i_word_size 32
i_block_size 16
i_cache_size 128
i_set_size 4
i_strategy LRU
i_write_policy WRITE_THROUGH
i_cache_enable true
…

dat a ac ces s

3 %

n o exe cut io n

pos si ble

6 %

ov er hea d

3 %

exec ut io n

8 8%

wr it e
1 3%

re ad

8 6%

ot her
1%

co nt ext l oa d

47 %

pr e empt io n

co nt ext sav e

18%

r es er ve da ta

2 % da ta

as si gnat i on

14 %

ch own dat a

0 %

se nd f re e
0 %

se nd di spo

0%

f ree da ta

3 %

a sk dis po

2%pr ee mpt ion

c ontext lo ad

1 4%

…
number of misses 2311
number of hits 6829
number of accesses 9140
miss rate (%) 25.28
hit rate (%) 74.72
…

x nb_simulation

Parameter
File

Compiled
Applications

Statistics
Automatic

Spreadsheet

Common
Parameters

SESAM
Simulator

Script

Figure 1. SESAM exploration tool and environment

Because the exploration of many parameters can take a

lot of simulation time, SESAM offers the possibility to au-

tomatically dispatch all the simulations to different host PCs.

Each available PC core defines an available slot, which can be

used to execute one simulation. The tool is structured around

a dispatcher and a NFS server (Figure 2). Thus, SESAM

can take benefits of available PCs to automatically parallelize

simulations and ease the exploration of architectures. For

example, 400 simulations can be carried out with 12 hosts

(40 slots) in less than one hour and a half to execute the model

presented in section V, i.e. the whole architecture SCMP and

the labeling application.

1

5

3

52
4

hosts dispatcher

6

Figure 2. Parallelization of SESAM simulations. The client copies
the simulator and its libraries on an NFS share folder (1). Then, the
client sends to the dispatcher the list of simulations to be executed
with their parameter files (2). The dispatcher looks for an available
slot to execute each simulation (3). Then, the host changes its working
directory to the NFS share folder and executes the simulation. At the
end of each simulation, the result is written into the share folder (4),
and the host informs the client through the dispatcher (5). Finally,
the client gets back all the results (6).

The programming model of SESAM is specifically adapted

to dynamic applications and global scheduling methods. Ob-

viously, it is inconceivable to carry out a generic program-

ming model for all asymmetrical MPSoCs. Nonetheless, it

is possible to add new programming models. The proposed

programming model is based on the explicit separation of

the control and the computation parts. As depicted in Figure

3, each application must be manually (the tool chain is still

under development) parallelized and cut into different tasks.

Thus, computation tasks and the control task are extracted

from the application, so that each task is a standalone program.

The control task handles the computation task scheduling

and other control functionalities, such as synchronizations and

shared resource management. Each embedded application can

be divided into a set of independent threads, from which

explicit execution dependencies are extracted. Each thread can

in turn be divided into a finite set of tasks. The greater the

number of independent and parallel tasks are extracted, the

more the application can be accelerated at runtime. A specific

Hardware Abstraction Layer (HAL) is provided to manage

all memory accesses and dynamic memory allocation. Others

can be developed to explore different memory management

strategies for example. Depending on the hardware platform

to explore, the designer can use this library or explicit physical

addresses without memory virtualization. Each task is defined

by a task identifier, which is used to dialog between the control

and the computation parts. Then, a manual partitioning must be

carried out in case of heterogeneous MPSoCs. Heterogeneous

resource management takes place before the task compilation.

Finally, all tasks are compiled and made available to the

processing resources or the control manager.

SESAM

Processing
Resources

Control
Manager

Manual operation

Compiled Application

Application

Control task

Binary

Partitioning

Binaries

Computation
Tasks

Dependency and
Parallelism Extraction

SESAM
HAL

SESAM
HAL

SESAM
HAL

Heterogeneous
Cross-compilation

Compilation

SESAM

Processing
Resources

Control
Manager

Manual operation

Compiled Application

Application

Control task

Binary

Partitioning

Binaries

Computation
Tasks

Dependency and
Parallelism Extraction

SESAM
HAL

SESAM
HAL

SESAM
HAL

SESAM
HAL

SESAM
HAL

SESAM
HAL

Heterogeneous
Cross-compilation

Compilation

Figure 3. SESAM programming model

Debugging the architecture is possible with a specific GNU

GDB [11] implementation. In the case of a dynamic task

allocation modeling, it is not possible to know off-line where

a task will be executed. Therefore, we built up a hierarchical

GDB stub that is instantiated at the beginning of the simula-

tion. A GDB instance, using the remote protocol, sends spe-

cific debug commands to dynamically carry out breakpoints,

watchpoints, as well as step by step execution, on an MPSoC

platform. This unique multiprocessor debugger allows the task

debugging even with dynamic migration between the cores.

Moreover, it is possible to simultaneously debug the platform

and the code executed by the processing resources.

Besides, SESAM uses approximate-timed TLM with ex-

plicit time to provide a fast and accurate simulation of highly

complex architectures. This model, described in [9], allows

the exploration of MPSoCs while reflecting the accurate final

design. We point out a 90 % accuracy compared to a fully

cycle-accurate simulator. Time information is necessary to

evaluate performances and to study communication needs

and bottlenecks. Thus, all provided blocks of the simulator

are timed and the communications use a timed transactional

protocol.

IV. SESAM INFRASTRUCTURE

As depicted in Figure 4, SESAM is structured as an

asymmetrical MPSoC. It is based on a centralized Control

Manager that manages the execution of tasks on processing

elements. SESAM proposes the use of different components

to design new MPSoCs. Other SystemC IPs can be designed

and integrated into SESAM if they have a compatible TLM

interface. The main elements are: the Memory Management

Unit (MMU), the Code Loading Unit (CLU), Memories, a

set of Instruction Set Simulators (ISS), a Direct Memory

Access (DMA) unit, a Control Manager and Network-on-

Chips (NoC).

Control
Manager

ISS
CLU

IPShared Memory Mem.

MMU

NoC

DMA

NoC

DI

Instr.
Mem.

Data
Mem.

Figure 4. SESAM infrastructure

A. MMU

The MMU is optional and can bring advanced capabilities to

manage all the shared memory space, which is cut into pages.

The whole page handler unit is physically distributed between

the MMU and the local Translation Lookaside Buffers (TLB)

for each processing core. All the memory functions are avail-

able through the SESAM HAL. It is possible to dynamically

allocate or deallocate buffers. There is one allocated buffer per

data block. An identifier is used for each data block to address

them through the MMU, but it is still possible to use physical

addresses. Different memory allocation strategies are available

and can be implemented.

B. CLU

The CLU dynamically loads task codes from the external

memory through a DMA access when it receives a con-

figuration command from the Control Manager. Then, in a

dynamic memory management context, it also has to update

the MMU to provide the corresponding virtual to physical

address translations. A context and a stack are automatically

included for each task.

C. Memory

Different memory elements can be instantiated. The mem-

ory space can be implemented as different banks or a single

memory. The former is logically private or shared, while the

latter is only shared between the processors. Memory segments

are protected and reserved for the Control Manager. Multiple

readers are possible and all the requests are managed by the

NoC.

D. ISS

We use processors, designed with the ArchC language, as

processing resources with data and instruction cache memo-

ries, which are optionals. The ArchC tool [12] generates func-

tional or cycle-accurate ISS in SystemC with a TLM interface

[13]. A new processor is designed in approximately 2 one-

man weeks, but it depends on the instruction set complexity.

Its simulation speed can reach tens of Millions of simulated

Instructions Per Second (MIPS). Different models are avail-

able (Mips, PowerPC, Sparc), as well as a complete Mips32

processor (with a FPU) at the functional level. Preemption

and migration of tasks are possible services that are available

through an interruption mechanism. It allows to switch the

context of the processing unit, to save it, and to restore the

context code from the executed task memory space.

E. DMA

A DMA is necessary to transfer data between the external

data memory and the internal memory space. A DMA is a stan-

dard processing resource and takes part in the heterogeneity of

the architecture. It is a fully-programmable unit that executes

a cross-compiled task for its architecture. A 3-dimensional

DMA is available. Transfer parameters can afterwards be

dynamically modified by other tasks, to specify source and

target addresses defined at run-time. Finally, it dynamically

allocates the required memory space for the transfer.

F. Control Manager

The Control Manager can be either a fully programmable

ISS, a hardware component, or a mix of both. With the

ISS, different algorithms can be implemented. Thanks to

the SESAM HAL and an interrupt management unit, the

tasks are dynamically or statically executed on heterogeneous

computing resources. In addition, multi-application execution

is supported by this HAL. A set of scheduling and allocating

services in hardware or software can be easily integrated,

modified and mixed. Besides, a complete hardware real-

time operating system is available, named Operating System

accelerator on Chip (OSoC). The OSoC supports dynamic

and parallel migration, as well as preemption of tasks on

multiple heterogeneous resources, under real-time and energy

consumption constraints.

G. NoC

Many NoC topologies are supported by SESAM: a

multibus, a mesh, a torus, a multistage and a ring network.

These networks are detailed in [9]. All are modeled in

approximate-timed TLM. Data exchanges are non-blocking

and deterministic, regardless of the network load or

the execution constraints. The multibus can connect all

masters to all slaves, but does not allow master to master

communications. In the mesh or the torus network, one

master and several slaves are linked with a router. An XY

routing and a wormhole technique are implemented. The

multistage is an indirect fully connected network. It is divided

into different stages composed of 4 input-output routers, and

linked with a butterfly topology. All masters are in one side

and all slaves are on the other side. It uses also a wormhole

technique to transfer packets. Finally, in a ring network,

a message has to cross each router when it goes through

a ring. A parameter can change the number of rings. But,

each master can connect itself to only one ring. A ring is

bi-directional. Besides, we use a fifo with each memory to

store memory accesses from computing resources. In order

to accept simultaneous requests, two arbiters can be used: a

FIFO or a fair round-robin policy. All communications are

done at the transactional level and we can accurately estimate

the time spent in every communication.

SESAM offers the possibility to model many different

asymmetric MPSoCs with various execution models. It allows

the exploration of different approaches for a given set of

applications, and the design of new architecture paradigms.

Moreover, it helps the sizing of architectures and highlights

many important features that cannot be evaluated before the

end of the design, such as the control overhead or the effective

performance. With its automatic exploration environment and

its fast execution (up to 4 MIPS), SESAM brings new facilities

to architects.

V. RESULTS

To demonstrate the SESAM’s capabilities to model new

asymmetric multiprocessors, we have used this framework to

carry out the SCMP architecture. The SCMP architecture is

a computation-intensive MPSoC that is seen by the CPU as

a coprocessor (Figure 5). This architecture is characterized

by the centralized hardware operating-system named OSoC,

that dynamically executes tasks on heterogeneous processing

elements. The SCMP architecture supports a constrained-task

and a dataflow execution model, through a logically shared and

physically distributed memory. The whole SCMP architecture

exists at the Register Transfer Level (RTL) in VHDL. Thus,

we had the possibility to add into SESAM, all latencies and

constraints, characterized by the Synopsys Design Compiler

tool with a low-leakage 0.13 µm@1.2V technology.

A. SCMP modeling

As depicted in Figure 5, the architecture owns three internal

NoCs. The system NoC interconnects the external CPU, the

external memories and the TLB dedicated to the application,

with the core of the architecture. The CPU represents a host

interface that allows the user to send on-line new commands

to the MPSoC. For instance, it is possible to ask for the

execution of new applications. The TLB Appli is used to store

all the pointers of each task for each application in the external

instruction memory. When the simulator starts, it automatically

loads all the selected applications into this memory and update

the TLB Appli.

The control NoC is used to connect the Control Manager

and all processing resources through a control interface. In ad-

dition, processing resources can communicate with each other,

and with the Memory Configuration and Management Unit.

The MCMU aggregates the MMU and the CLU presented

before. The data NoC is only used for communication between

the processing resources and the local memories. It is a multi-

bus network that connects all PEs and I/O controllers to all

shared and banked memory resources. A specific memory,

named system memory, is accessible through this network and

owns all the system code used by the computing resources.

The OSoC prefetches tasks’ code before its execution and

manages all the dependencies between tasks. It determines

the list of eligible tasks to be executed, based on control

and data dependencies. It also manages exclusive accesses to

OSoC

MCMU

CPU
TLB
Appli

Data
Mem.

DMAMIPS32

Mem

Instr.
Mem.

CTRL IF

TLB

CTRL IF
TLB

DI

MemMemMemMemMemMem
Syst.
Mem

System NoC

Control NoC

Data NoC

Figure 5. SCMP infrastructure

shared resources, and non-deterministic processes. Then, task

allocation follows online global scheduling, which selects real-

time tasks according to their dynamic priority, and minimizes

overall execution time for non real-time tasks. The OSoC is

parameterized to support 32 simultaneous active tasks and

8 processors. The time between two successive schedulings,

named time-tick, is about 19 µs.

We have deliberately used a homogeneous architecture

composed of Mips32 processors to highlight our parallelism

management approach rather than overall system performance.

Each processor has a 1KB data and instruction cache exclusive

memory and has an access to 64 memory banks of 16KB

each. Nonetheless, we use a DMA unit to carry out input

image transfers between the internal local memories and the

external data memory. ISSs boot on a read-only memory,

named system memory, that contains all the system code.

When the initialization is done, they wait for the Control

Manager requests.

The SCMP programming within the SESAM environment

necessitates the integration of a Mips32 cross-compiler and

the OSoC toolchain. Only the C language is supported for

computation tasks. The OSoC needs a Control Data Flow

Graph (CDFG) that represents all control and data depen-

dencies of the parallelized application, described with an

assembly language that can easily represent CDFGs. Each

transition represents an execution constraint that imposes the

task execution order. Finally, a parser generates the binary for

the control manager from the CDFG file. Besides, the complete

system code needed by the platform is decribed by the Mips32

assembly language.

B. Implemented application

SCMP architecture offers a very high degree of parallelism.

Thanks to dedicated hardware scheduling and fast reactivity,

it also enhances resource utilization. To measure SCMP’s

performance for dynamic embedded applications, we imple-

mented the connected component labeling algorithm (figure

6). It is a critical application for embedded vision systems

and is particularly relevant to this study in terms of dynamism,

parallelism and control dependencies. The labeling algorithm

transforms a binary image into a symbolic image so that each

connected component is uniquely labeled based on a given

heuristic. Connected component labeling is used in computer

vision to detect binary regions. Various algorithms have been

proposed ([14], [15]) but we have chosen a contour tracing

technique that is interesting to stress the architecture [16].

C. Modeling results

We simulated all the platform parameters that affect our

results and the OSoC penalties (e.g. communication, control,

access time to memories, etc.). We parallelized the initial

algorithm by creating independent tasks and carried out the

corresponding application graph. We cut the image into sub-

images and applied the algorithm on each sub-image. Then, we

successively carried out a vertical and a horizontal fusion of la-

bels to analyze frontiers between sub-images. We constructed

corresponding tables between labels and changed all labels in

sub-images in parallel. To get multiple independent tasks, we

executed the application on a 128x128 image, cut into 128 sub-

images. At the end, the parallelization brought a new software

complexity but involves independent and parallel tasks without

modifying the algorithm. An example of extracted results is

shown in Figure 7.

As shown in Figure 7-a, thanks to the multi-bank memory

architecture and the hardware scheduler, SESAM simulations

show that the overhead, due to data accesses (waiting for ready

data) and the OSoC scheduling, is rather constant whatever the

PE parallelism is. This overhead represents only 3.5 % with

1 PE up to 30 % with 8 PEs of the total execution time. The

control is an irregular processing that can only be partially

parallelized. This leads to an acceleration factor that can reach

around 5 on 8 PEs (Figure 7-b). SESAM demonstrates that a

fast migration mechanism can ensure a good occupation of

multiple homogeneous resources. These simulations also show

how the control overhead is important to the overall perfor-

mance, and that its optimization can have a very strong impact

on the energy and transistor efficiency. Figure 7-c compares

the execution length with a multibus and a ring network, while

varying the number of computing resources. SESAM shows

that the multibus network offers better performances to the

architecture. In addition, we underline the limit of the ring

network in such architectures. Indeed, between 8 and 12 PEs,

the execution time increases by 2 % due to the latency. Finally,

Figure 7-d shows the total data cache miss rate in function of

its size and the writing policy. SESAM demonstrates that, for

this application, a write-back policy with a 512 byte data cache

memory is the best trade-off.

SESAM brings the possibility to model a complete asym-

metric multiprocessor and to get many useful information on

the behavior of the architecture. Most of these information

are not obvious and only a real implementation, with accurate

timed simulation, can demonstrate the performance of an

architecture. For instance, overheads due to data dependencies

was difficult to determine before these simulations, as well as

the effective acceleration that could be reached with several

processors. The simulation speed reaches around 0.5 MIPS

for the whole platform, and each execution instance of the

application on 128x128 images takes 11 minutes on an Intel

Core 2 Extreme X6800 at 2.93 GHz.

VI. CONCLUSION

This paper presented an asymmetric MPSoC simulator

named SESAM. Asymmetric MPSoCs become the solution to

execute dynamic embedded applications, while taking care of

the transistor and the energy efficiency. This tool allows the

design space exploration and optimization of such architec-

tures, while keeping a high accuracy level (90 %). It can also

take part in a complete design flow, thanks to its compatibility

with standard co-simulation framework. The study of multiple

MPSoC instances is eased by a complete environment and an

automatic chart generation.

Its performance and capabilities were demonstrated through

the simulation of a complete MPSoC architecture. Important

results have been easily obtained and the SESAM capacity

to size the architecture according to application needs has

been shown. The whole architecture speed under the SESAM

framework reaches 0.5 MIPS. We now rely on SESAM to im-

prove current research development and bring more innovative

results.

REFERENCES

[1] A. A. Jerraya and W. Wolf. Multiprocessor Systems-on-Chips. Elsevier,
2005.

[2] M. Bertogna, M. Cirinei, and G. Lipari. Schedulability Analysis of
Global Scheduling Algorithms on Multiprocessor Platforms. IEEE

Transactions on Parallel and Distributed Systems, 20(4):553–566, April
2008.

[3] J. J. Yi and D. J. Lilja. Simulation of computer architectures: simulators,
benchmarks, methodologies, and recommendations. IEEE Transactions

on Computers, 55(3):268–280, March 2006.

[4] J. Cong, K. Gururaj, G. Han, A. Kaplan, M. Naik, and G. Reinman. MC-
Sim: An efficient simulation tool for MPSoC designs. In IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), pages
364–371, 2008.

[5] G. Beltrame, C. Bolchini, L. Fossati, A. Miele, and D. Sciuto. ReSP: A
non-intrusive Transaction-Level Reflective MPSoC Simulation Platform
for design space exploration. In Asia and South Pacific Design

Automation Conference (ASPDAC), pages 673–678, 2008.

[6] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri.
MPARM: Exploring the Multi-Processor SoC Design Space with Sys-
temC. VLSI Signal Processing Systems, 41(2):169–182, 2005.

[7] B. Foote and R.E. Johnson. Reflective Facilities in Smalltalk-80. In
Object-Oriented Programming Systems, Languages and Applications

(OOPSLA), pages 327–335, 1989.

[8] SuperESCalar simulator. http://www.sesc.sourceforge.net/.

[9] A. Guerre, N. Ventroux, R. David, and A. Merigot. Approximate-Timed
Transaction Level Modeling for MPSoC Exploration: a Network-on-
Chip Case Study. In Euromicro Conference on Digital System Design

(DSD), Patras, Greece, August 2009.

[10] ModelSim. http://www.model.com/.

[11] The GNU GDB project. http://www.gnu.org/software/gdb/.

[12] M. Bartholomeu G. Araujo C. Araujo R. Azevedo, S. Rigo and E. Bar-
ros. The ArchC Architecture Description Language and Tools. Parallel

Programming, 33(5):453–484, 2005.

[13] C. Bechara, N. Ventroux, and D. Etiemble. Towards a Parameterizable
Cycle-Accurate ISS in ArchC. In ACS/IEEE International Conference

on Computer Systems and Applications (AICCSA), Hammamet, Tunisia,
May 2010.

3232

00
START

11

1717

22

1818

33

1919

44

2020

2525

55

2121

66

2222

77

2323

88

2424

2626

2828

2929 3030 3131

3333

END

Synchronizations17 to 24

Labelling on subimages9 to 16

DMA transfers to internal shared

memories

1 to 8

DMA transfer to external memory33

Vertical correspondence and fusion29 to 32

Data synchronization28

Horinzontal correspondence and fusion25 to 26

Initializations0

FunctionTasks

Synchronizations17 to 24

Labelling on subimages9 to 16

DMA transfers to internal shared

memories

1 to 8

DMA transfer to external memory33

Vertical correspondence and fusion29 to 32

Data synchronization28

Horinzontal correspondence and fusion25 to 26

Initializations0

FunctionTasks

8

2

1

5
4

7

3

6

8

2

1

5
4

7

3

6

1

2

1

2

3

1

2

1

2

3

1

2

1

2

3

1

2

1

2

3

1 1

1

1

2

1

2

3

1

2

1

2

3

1 1

1

1 1

1

99 1010 1111 1212 1313 1414 1515 1616

Figure 6. Labeling application after its parallelization. The labeling is done in all sub-images and two horizontal and vertical fusions are
done to get the final labelized image. The corresponding graph is executed by the OSoC, whereas all tasks are processed by MIPS32 ISS.

Figure 7. Connected component labeling algorithm execution on the SCMP architecture: (a) total execution time and overhead details
depending on the Processing Element (PE) number (Mips32 processors); (b) acceleration rate with multiple PEs versus only one PE, and
comparison with the maximum theoretical acceleration that we could obtain without overheads; (c) total execution time depending on the
number of PE and two different network topologies; and (d) data cache miss rate with different cache size and writing policies.

[14] I. Horiba K. Suzuki and N. Sugie. Linear-time connected-component
labeling based on sequential local operations. Computer Vision and

Image Understanding, 89(1):1–23, 2003.
[15] L. Lacassagne and B. Zavidovique. Light speed labeling: efficient

connected component labeling on RISC architectures. Journal of Real

Time Image Processing, December 2009.
[16] C.J. Chen F. Chang and C.J. Lu. A Linear-Time Component-Labeling

Algorithm Using Contour Tracing Technique. Computer Vision and

Image Understanding, 93(2):206–220, 2004.

