
A small footprint interleaved multithreaded
processor for embedded systems

Charly Bechara, Aurelien Berhault, Nicolas Ventroux,
Stéphane Chevobbe, Yves Lhuillier, Raphaël David

CEA, LIST,
Embedded Computing Laboratory,

Gif-sur-Yvette, F-91191, FRANCE;
Email: charly.bechara@cea.fr

Daniel Etiemble

Université Paris Sud,
Laboratoire de Recherche en Informatique,

Orsay, F-91405, FRANCE;

Abstract—With the increase in the design complexity of
MPSoC architectures and the need for more transistor/energy
efficient processor architectures, designers are exploiting the
parallelism at the thread level (TLP) through the implementation
of embedded multithreaded processors. Moreover, future
manycore architectures tend to use small footprint RISC cores.
In this paper, we present a small footprint, scalar, in-order,
5-stage pipeline, interleaved multithreaded processor with 2
hardware thread contexts for embedded systems and SoC
integration. Synthesis results in 40 nm TSMC shows that
the multithreaded core area is only 19800 µm2 and 13.97
kilogates, which is almost equal to a 4KB direct mapped
cache memory according to CACTI 6.5 tool [1]. The IMT core
has an augmentation of 73.2% in core area compared to the
monothreaded core. The multithreaded core is validated by
running a simple bubble-sort application and varying the L1
D$ memory. The average performance gain is 17% compared
to the monothreaded core.

keywords: multithreaded processors, interleaved multithread-
ing, System-on-Chip, embedded systems, RISC

I. INTRODUCTION

Traditional high-performance superscalar processors imple-
ment several architectural enhancement techniques such as
out-of-order execution, branch prediction, and speculation, in
order to exploit the instruction-level parallelism (ILP) of a
single-thread sequential program. However, due to the limits of
ILP [2], a more coarse-grained solution consists of exploiting
the parallelism at the thread level (TLP), where multiple
threads can be executed in parallel on multicore processors
or concurrently on hardware multithreaded processors.

A hardware multithreaded processor [3] provides the hard-
ware resources and mechanisms to execute several hardware
threads on one processor core in order to increase its pipeline
utilization, hence the application throughput. Unused instruc-
tion slots, which arise from pipelined execution of single-
threaded programs by a monothreaded core, are filled by
instructions of other threads within a multithreaded processor.
The hardware threads compete for the shared resources and
tolerate pipeline stalls due to long latency events, such as cache
misses. These events can stall the pipeline up to 75% of its
execution time [4]. Thus, multithreaded processors have two

major advantages over other types of processors: 1) they offer
the ability to hide latency within a thread (e.g., memory or
execution latency) and 2) they achieve high transistor/energy
efficiency.

Many general purpose single-chip processors exploit ILP,
but as the limits of this approach are being reached, such
processors are beginning to support both ILP and TLP, such
as Intel(R) Pentium(R) 4 Hyper-Threading (HT) [5]. This
allows the processor to exploit a wider range of parallelism,
but considerably increases the chips complexity and power
consumption, making them unsuitable for embedded appli-
cations. For instance, the Intel(R) Pentium(R) 4 processor
supports Hyper-Threading with 2 thread contexts (TC), has a
die size of 81 mm2, and consumes more than 86 Watt in 65-
nm technology [5]. On the other hand, embedded processors
must have a die size in the order of few hundreds µm2 and
most consume in the order of few mW, using the currently
available technologies (65 nm and below). Thus, they should
support simple technology for exploiting ILP, such as pipelin-
ing or VLIW. Non-deterministic ILP boosting mechanisms,
such as speculative scheduling or branch prediction, should
be avoided. In this context, processing a single thread stream
often leaves many functional units of the embedded processor
underutilized. To compensate the loss in single-thread perfor-
mance and to increase the transistor/energy efficiency of the
embedded processor, designers are exploiting the parallelism
at the thread level (TLP) through the implementation of
embedded multithreaded processors [6], [7].

Moreover, future manycore architectures tend to use small
footprint RISC cores [8]. Therefore, in this paper study,
we will consider the extreme case: a 5-stage pipeline, in-
order, single-issue, monothreaded RISC core. Then, we
will support this core with hardware interleaved multithreading
(IMT). The following are the main contributions of this paper:

• Design methodology and validation in RTL of a scalar in-
terleaved multithreaded processor for embedded systems
from a small footprint RISC monothreaded processor.

• Synthesis results of the monothreaded and the IMT cores
that give the designers the accurate occupation rate of
each core component.



This paper is organized as follows: Section II discusses re-
lated works on different types of multithreading techniques for
scalar monothreaded processors. In particular, the interleaved
multithreading (IMT) will be retained in this study. Section III
introduces briefly the scalar, in-order, 5-stage monothreaded
core that we will use as the base processor throughout our
study. The monothreaded core will be synthesized in 40 nm
TSMC technology. Based on the surface occupation rate, we
will deduce the optimal number of thread contexts (TC) that
can be integrated. Then, section IV applies the IMT technique
to the monothreaded core by adding only the necessary
components. In section V, we will validate the IMT core and
compare it to the monothreaded core using a simple bubble-
sort application. And finally, section VI concludes the paper
by discussing the present results along with future works.

II. RELATED WORK

Two types of multithreading techniques exist for the scalar
and in-order monothreaded core: interleaved and blocked.

Interleaved multithreading (IMT), also called switch-on-
cycle or fine-grain multithreading, is a multithreading tech-
nique that issues an instruction from a different thread at every
clock cycle using a round-robin scheduler, with zero context-
switching overhead. The first well-known architecture which
uses IMT is the Denelcor HEP [9]. It supports up to 50 threads
in hardware. Tera MTA [10] is a derivative of the HEP with
similar properties that supports 128 TCs. These architectures
do not use caches, and rely on having a large number of threads
to hide the memory latency between successive instructions of
a thread. At any point in time, each pipeline stage will contain
an instruction from a different thread. Therefore, there is no
need for a complex circuitry that handles data dependencies
between the instructions, since each thread can have just one
instruction in the pipeline. Nevertheless, to support sufficient
parallelism and eliminate the need for a ’data forwarding unit’
that handles data dependencies, the number of active threads
should be equal or greater to the number of pipeline stages. For
instance, MIPS 34K [6], a recent IP for MPSoC integration,
has a 9-stage pipeline and supports 9 TCs. SUN UltraSPARC
T2 [11], a CMT processor used for server architectures, has a
6-stage pipeline for each core and supports 8 TCs. In the IMT,
the performance of a single thread is degraded by 1/n, where
n is the number of TCs. Thus, IMT architectures are useful for
throughput oriented architectures. For example, in embedded
systems, Eleven Engineering XInc [12] and Ubicom MASI
[13] IMT processors are used in the wireless communication
domain. Another researcher has developed an IMT MicroBlaze
soft-IP for FPGAs [14].

On the other hand, blocked multithreading (BMT), also
called switch-on-event or coarse-grain multithreading, allows
a thread to run normally as in sequential mode before being
switched out for long latency events such as cache misses,
memory loads, failed synchronization [15], or wait for pro-
ducer data in a streaming execution model. These events
normally represent points in execution at which the processor
would become idle for a long period of time. In such a case, it

is useful to perform a context switch and execute instructions
from another thread to fill the otherwise idle cycles. This is
only effective when the context switch time is significantly less
than the idle period of the event causing the switch [16]. The
main advantage of BMT is that it requires a smaller number
of TCs for multithreading, which means lower hardware cost
than IMT. For instance, Infineon TriCore2 [7] supports 2 TCs
for a 6-stage pipeline, PRESTOR-1 [17] supports 4 TCs for
a 10-stage pipeline, and MulTEP [18], which is based on
Anaconda multithreaded processor [19], supports 2 TCs for
a 5-stage pipeline. In addition, each thread can execute at full
processor speed as in single-threaded mode. However, careful
processor design choices must be taken to not starve other
waiting thread contexts. For instance, if the BMT processor is
well-dimensioned and the cache misses are almost negligible,
this means there will be no context switches, hence other
thread contexts will never advance in execution. Thus, for
real-time embedded applications, TCs should have priorities
to guarantee the response time. For instance, in TriCore 2,
TC0 is the main thread and TC1 is a helper thread. Another
drawback is the context switch penalty, which is dependent of
the number of pipeline stages. In fact, for each thread context
switch, the pipeline should be totally flushed and reset.

Multithreaded processor type

Interleaved

‐ MIPS MIPS 34K
‐ Eleven Engineering Xinc

‐ Ubciom MASI
‐ Imagination Technologies META

‐ Uni. Peking MT‐ARM
‐ American Uni. Beirut IMT‐MB

Blocked

‐ Infineon TriCore2
‐ Uni. Augsburg Rhamma
‐ Uni. Oldenburg MSPARC

‐ Japan AIST Prestor‐I
‐ Uni. Cambridge JMA

‐ Uni. Virginia dMT

Figure 1. Examples of industrial and research interleaved and blocked
multithreading architectures for embedded systems

Examples of recent IMT and BMT processors that exist
in embedded systems is shown in Figure 1. To the authors’
knowledge, there are lot of misconceptions in the literature
of the actual surface overhead of the multithreaded processor
compared to its monothreaded counterpart. Some manufactur-
ers claim it is only 5% [5]. It is not clear if they considered
the core area alone or with the L1 cache memories. However,
we believe that this low number only applies for a big general-
purpose processor, and might change for small footprint cores
in embedded systems. Therefore, in this next sections, we
will investigate in more detail the exact area overhead of an
interleaved multithreaded core applied for a small footprint
monothreaded core.

III. MONOTHREADED ANTX

The monothreaded core that will be retained throughout
our study is called AntX. It has lot of similarities with
MIPS-I R3000 described in [20]. AntX is a scalar, in-order,
5-stage pipeline (IF,ID,EX,MEM,WB), monothreaded RISC
core (Figure 2), developed by the Embedded Computing
Laboratory at CEA LIST. It is a 32-bit architecture designed



specifically to be used as a low-cost control core in a MPSoC
environment. Therefore, there are no complex units such as
a branch predictor, FPUs, and multipliers. Its register file is
composed of 16 32-bit registers.

Figure 2. Monothreaded AntX: scalar, in-order, 5-stage,
monothreaded processor

AntX comes along with a dedicated GNU toolchain (antx-
elf-gcc and all binutils) that is already ported to its ISA. The
ISA supports a variable instruction size (16/32 bit) in order
to reduce the instruction memory footprint. So, some basic
arithmetic/logic/comparison/jump instructions are coded in 16-
bit, while other more complex instructions are coded in 32-bit.
The Instruction Fetch (IF) unit fetches a 32-bit instruction from
the memory and handles the aligned/unaligned instructions in
a finite state machine (FSM). Figure 3 shows the different
cases of input instruction combinations.

The instruction flow in the pipeline resembles that of the
MIPS-I R3000 described in [20]. One exception is that the
jump/branch instructions are executed in the EX-stage instead
of the ID-stage. They use the ALU in order to calculate the
new program counter (PC) address, so the hardware cost of
a dedicated adder is compensated. Another difference is that
we disabled the delay slot instruction after a jump/branch
instruction using the gcc compiler option ’-fno-delayed’. The
compiler inserts always a ’nop’ instruction.

Figure 3. Representation of different cases in AntX Instruction Fetch

The control pipe unit is responsible of handling the data
dependencies between the instructions in the different pipeline

stages. For example, when an instruction in the ID-stage wants
to read a data from a specific register, and that data is already
calculated but not yet committed by the WB-stage, the control
pipe will forward the data using the ’data forwarding unit’
from the WB-stage to ID-stage without stalling the pipeline.
Data forwarding eliminates most of the pipeline hazards
(WAR, RAW, WAW). However, 1-cycle pipeline stall latency
can still occur due to 2 reasons: branch instructions penalty (if
taken-branch) and pipeline interlocks due to load/store instruc-
tions in the MEM-stage. The latter is due to memory access
latency during a L1 cache hit when load/store instructions are
in the MEM-stage. On the other hand, if the data is not present
in the L1 cache (cache miss), then the waiting time is more
than 1 clock cycle. In fact, those pipeline stalls will degrade the
processor performance and stop it from reaching the optimal
IPC of 1.

A monothreaded AntX RTL model has been developed in
VHDL and has been synthesized in 40 nm TSMC technol-
ogy using Synopsys dc shell 2009.06-SP1 (low power, low
threshold voltage, worst case) with a frequency of 300 MHz.
The surface repartition of each module is shown in Figure
4. The overall core area is 11417 µm2, which is about 8.05
kilogates. AntX area is smaller than a 2KB direct mapped
cache memory according to CACTI 6.5 tool [1]. The average
power consumption of this model is 1.67 mW.

Figure 4. Surface repartition of different components in monothreaded
AntX for 40 nm TSMC technology. Total area = 11417 µm2, Total
number of gates = 8.05 kilogates

One clear observation is that the register file occupies 38%
of the total core area, which is a significant portion of the
tiny monothreaded core. In a multithreaded processor, each TC
has its own register file. Therefore, for a multithreaded AntX
with 4 TCs, the new core area increase will be more than
100%. This implies there is a diminishing return advantage of
implementing an embedded multithreaded processor more than
2 TCs. Another motivation for implementing 2 TCs is that the
pipeline stall penalty is 1-cycle for most of the cases. Thus,
dependent instructions are only 1 pipeline stage distant from
each other and 2 TCs are enough for masking this dependency.
Therefore, for the rest of our work, we chose multithreaded
processors with 2 TCs. In the next section, we will explore in
more details the core die area increase due to IMT.



IV. IMT ANTX

IMT is a multithreading technique that issues an instruction
from a different thread at every clock cycle using a round-
robin scheduler, with zero context-switching overhead. In
this section, we will modify the monothreaded AntX RTL
model described in section III in order to support interleaved
multithreading with 2 hardware TCs. In fact, for a 5-stage
pipeline, 2 TCs are sufficient to eliminate the stall conditions
due to pipeline interlocks and branch penalties (if taken-
branch). AntX IMT with 2 TCs (TC1 and TC2) is shown in
Figure 5.

Figure 5. Interleaved multithreaded AntX: scalar, in-order, 5-stage,
interleaved multithreaded processor

The following are the main modifications for extending the
monothreaded to IMT AntX:

• Duplicating the register file and PC: Each TC should
have its own register file and PC in order to store and
switch the context in zero time overhead.

• Duplicating control pipe: The control pipe module is
used to manage the instruction flow and dependencies
of a TC at each pipeline stage. Therefore, it controls the
pipeline and validity of each stage. In IMT, two succes-
sive pipeline stages have instructions from different TC.
Therefore, to support 2 TCs, either we have to modify the
original control pipe (monothreaded version) or duplicate
it. According to the synthesis results of the monothreaded
AntX (Figure 4), the surface occupation of the control
pipe is only 1%. Accordingly, from development and
validation time perspectives, we duplicate the control
pipe. In addition, a multiplexer is added for each I/O
signal belonging to the control pipe. This multiplexer
switches between the 2 control pipes depending on the
actual TC identifier in the pipeline stage. The multiplexers
are not on the critical path of the synthesized architecture.

• Duplicating IF module: To manage two different TCs, the
IF module can be modified or duplicated. The first one
involves modifying the fetch state machine and saving
each TC state at each context switch, which incorporates
more development and validation time. The second one

is easier to implement, since the IF module is already
validated. Furthermore, in terms of surface cost, the two
solutions would be equivalent, since the modification
of the IF module incorporates the addition of a large
number of registers to store the TC state. Therefore, the
second solution has been preferred. However, a small
modification is required for each IF module to handle
properly the instruction fetching: the state of the FSM
should be delayed. This implies that the FSM is updated
every 2 clock cycles, since each TC is processed at half
the speed. In our model, the IMT pipeline is not fully
blocked if one TC is blocked. As shown in Figure 6, if
TC2 is blocked due to I$ miss, then TC1 can continue
fetching instructions at half speed.

• Augmenting the EX/MEM inter-stage register size: When
a data cache miss occurs in the MEM stage for TC1,
the pipeline is normally stalled waiting for the data.
Meanwhile, TC2 instructions could have proceed their
execution and increase the pipeline utilization. Therefore,
the EX/MEM register has been increased to save the
EX/MEM state that corresponds to TC1 in order to be
reloaded when TC1’s data arrives as shown in Figure 7.
If the state is not saved, the MEM module would have
the output from a wrong instruction, and the instruction
that caused the data miss would be lost. To guarantee a
correct behavior, the PC of the blocked context should
not be incremented during a data cache miss.

• Delaying signals: Some signals have been delayed so they
correspond to the right TC. For instance, the bypass PC
signal from IF-stage to EX-stage and the execution flag
signal from EX-stage are delayed by 1 cycle. Otherwise,
the instruction execution flow would be incorrect.

Cycle Fetch Decode Execute Mem WB

N
Instr1

(TC1)
X X X X

N+1
Instr1

(TC2)

I$ Miss

Instr1

(TC1)
X X X

N+2
Instr2

(TC1)

Instr1

(TC2)

BUBBLE

Instr1

(TC1)
X X

N+3
Instr1

(TC2)

I$ Miss

Instr2

(TC1)

Instr1

(TC2)

BUBBLE

Instr1

(TC1)
X

N+4
Instr3

(TC1)

Instr1

(TC2)

BUBBLE

Instr2

(TC1)

Instr1

(TC2)

BUBBLE

Instr1

(TC1)

N+5

Instr1

(TC2)

I$ Hit

Instr3

(TC1)

Instr1

(TC2)

BUBBLE

Instr2

(TC1)

Instr1

(TC2)

BUBBLE

Figure 6. Example of Fetch running in IMT AntX processor during
an instruction cache miss

IMT AntX RTL model has been developed in VHDL
and has been synthesized in 40 nm TSMC technology (low
power, low threshold voltage, worst case) with a frequency
of 300MHz. The surface repartition of each module is shown
in Figure 8. The overall core area is 19800 µm2, which is
about 13.97 kilogates. IMT AntX area is almost equal to a
4KB direct mapped cache memory according to CACTI 6.5
tool [1].



Cycle Fetch Decode Execute Mem WB

N
Instr3

(TC1)

Instr2

(TC2)

Instr2 

(TC1)

Instr1

(TC2)

D$ Miss

Instr1

(TC1)

N+1

Instr2

(TC2)

BUBBLE

Instr3

(TC1)

Instr2

(TC2)

Instr2 

(TC1)

Instr1 

(TC2)

BUBBLE

N+2
Instr4

(TC1)

Instr2

(TC2)

BUBBLE

Instr3

(TC1)

Instr1

(TC2)

D$ Miss

Instr2 

(TC1)

N+3

Instr2

(TC2)

BUBBLE

Instr4

(TC1)

Instr2

(TC2)

BUBBLE

Instr3

(TC1)

Instr1 

(TC2)

BUBBLE

N+4
Instr5

(TC1)

Instr2

(TC2)

BUBBLE

Instr4

(TC1)

Instr1

(TC2)

D$ Hit

Instr3

(TC1)

N+5
Instr2

(TC2)

Instr5

(TC1)

Instr2

(TC2)

BUBBLE

Instr4

(TC1)

Instr1

(TC2)

Figure 7. Example of data cache miss managed by IMT AntX
processor using augmented EX/MEM inter-stage register

Figure 8. Surface repartition of different components in IMT AntX
for 40 nm TSMC technology. Total area = 19800 µm2, Total number
of gates = 13.97 kilogates

The IMT AntX has an augmentation of 73.2% in core area
compared to the monothreaded AntX. This is mainly due to
doubling the RF, PC, and IF modules, which is essential for
proper IMT functioning. However, if we consider the area
of the L1 caches with the core area, then this percentage
will drop. For instance, for a L1 I$ and D$ of 2 KB, IMT
AntX has an augmentation of only 23.8% with respect to the
monothreaded AntX.

V. VALIDATION

In this part, we provide a case study scenario in order to val-
idate the functionality of the IMT model in an embedded SoC
platform and compare its performance to the monothreaded
model.

We use a typical processor system environment described
in Figure 9. The processor-memory architecture is based on
a Harvard architecture with separate L1 instruction cache (I$)
and data cache (D$) busses. It implements a 2-level memory
hierarchy with L1 I$ and D$ memories, connected with an
AHB bus to an on-chip L2 instruction and data memories.
The L2 memories contain all the instruction and data codes
of the applications.

The processor can be either monothreaded or IMT AntX
with 2 TCs. For the IMT AntX, the L1$ memory is segmented
per TC in order to limit cache interferences. Therefore, each
TC has half the L1$ size compared to the monothreaded AntX.

AntX 
monothreaded 

or 
IMT

AHB

Instruction
Memory

Data 
Memory

L1 I$
(512 B)

L1 D$
(512 B, 1KB, 

2KB, 4KB)

1 cycle1 cycle

6 cycles 7 cycles

Figure 9. AntX processor system environment with L1 I$ and D$
connected with an AHB bus to on-chip instruction and data memories

For this experiment, we consider a basic bubble-sort
application for 100 elements. The application has lot of
jump/branch instructions and data dependencies between in-
structions. We run 2 instances of the application with different
elements sequentially on the monothreaded processor, and
concurrently on the IMT processor.

In this experiment, we vary 2 platform parameters for a
better architecture exploration. First, the processor type can
be chosen to be monothreaded or IMT. Second, the L1 D$
memory size can be set to 512 B, 1 KB, 2 KB, and 4 KB.
This will generate different data cache miss percentages as
shown in Figure 10. The L1 I$ size is fixed to 512 Byte, which
is sufficient for the bubble-sort application and generates only
0.1% of I$ miss. A L1 cache hit takes 1 clock cycle, an access
to L2 instruction memory due to L1 I$ miss takes 6 cycles,
and an access to L2 data memory due to L1 D$ miss takes
7 cycles on average. L2 memory access time might vary few
cycles (1-2 cycles) depending on the AHB arbiter.

Figure 10. Data cache miss rate for monothreaded and IMT AntX
while varying the cache size: 512 Byte, 1 KB, 2 KB, 4 KB

In Figure 11, we show the execution time in cycles for
all the configurations. We decompose the total execution time
into 4 components: effective execution time, branch instruction
penalty time due to ’taken’ branches, data dependencies stall
time due to pipeline interlocks, and memory stalls time due
to cache misses.

As we can notice from Figure 11, the IMT processor



Figure 11. Performance results of monothreaded v/s IMT AntX
running two bubble-sort applications on 100 elements. The IMT
overcomes the performance of the monothreaded by 17% on average

overcomes the performance of the monothreaded processor
for all the cache configurations. The performance gain varies
between 12.7% and 20.7%. In fact, the performance gain
highly depends on the percentage of data cache misses that
each segmented cache generates. Each TC in IMT processor
has half the cache size, hence it generates more cache misses
and more pipeline stalls due to L2 memory access. Due
to its interleaving property, the IMT tolerates the pipeline
stalls generated by branch penalties and data dependencies
between instructions. Their stall time are hidden completely
by executing instructions from another TC, if it is active. It is
clear that 2 TCs are sufficient to hide all these latencies for a
5-stage pipeline processor.

VI. CONCLUSION

This paper presented a small footprint, scalar, in-order,
5-stage pipeline, interleaved multithreaded processor with 2
hardware thread contexts for embedded systems and SoC
integration. The RTL model of the IMT processor is based
on a RISC monothreaded processor called AntX, which re-
sembles the MIPS-I R3000 [20]. The synthesis results of the
monothreaded core showed that there is no area advantage
of adding more than 2 TCs for the multithreaded core. In
fact, for each TC, the register file, the PC, and the IF module
should be doubled to guarantee proper IMT functioning. The
overall multithreaded core area is 19800 µm2 and 13.97
kilogates, which is almost equal to a 4KB direct mapped
cache memory according to CACTI 6.5 tool [1]. The IMT
AntX has an augmentation of 73.2% in core area compared
to the monothreaded AntX. The IMT RTL model is validated
by executing 2 instances of a simple bubble-sort application
concurrently, while varying the L1 D$ size. The extracted
pipeline statistics showed that the IMT model is able to hide
all the pipeline stalls due to data dependencies between in-
structions and branch penalties. The IMT core gives an average
performance gain of 17% compared to the monothreaded core.

For future work, we aim to implement the blocked multi-
threaded (BMT) processor and compare its surface overhead
and performance with the IMT processor. In addition, we want
to port more significant benchmarks for embedded systems and
run them on the 3 processor models.

Acknowledgements

We thank Alain Chateigner, Erwan Piriou, and Philippe
Fauvel for their helpful contributions in this work.

REFERENCES

[1] Naveen Muralimanohar and Rajeev Balasubramonian. Cacti 6.0: A tool
to model large caches.

[2] D.W. Wall. Limits of instruction-level parallelism. In Int’l Conf. on Ar-
chitectural Support for Programming Languages and OperatingSystems
(ASPLOS), Santa Clara, USA, April 1991.

[3] Theo Ungerer, Bortu Robic, and Jurij Silc. Multithreaded Processors.
The Computer Journal, 45:320–348, 2002.

[4] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Nia-
gara: A 32-Way Multithreaded Sparc Processor. IEEE Micro, 25(2):21–
29, 2005.

[5] D. Koufaty and D.T. Marr. Hyperthreading technology in the netburst
microarchitecture. Micro, IEEE, 23(2):56 – 65, march-april 2003.

[6] MIPS. Programming the MIPS32 R© 34K Core Family. Technical report,
MIPS Technology, 2005.

[7] Erik Norden. A Multithreaded RISC/DSP Processor with High Speed
Interconnect, 2003.

[8] Krste Asanovic, Ras Bodik, Bryan C. Catanzaro, Joseph J. Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William L. Plishker, John
Shalf, Samuel W. Williams, and Katherine A. Yelick. The landscape of
parallel computing research: a view from Berkeley. Technical Report
UCB/EECS-2006-183, Electrical Engineering and Computer Sciences,
University of California at Berkeley, December 2006.

[9] J. S. Kowalik. Parallel mimd computation: the hep supercomputer and
its applications. 1985.

[10] M. Howard and A. Kopser. Design of the Tera MTA integrated circuits.
In Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1997.
Technical Digest 1997., 19th Annual, pages 14 –17, oct 1997.

[11] M. Shah, J. Barren, J. Brooks, R. Golla, G. Grohoski, N. Gura,
R. Hetherington, P. Jordan, M. Luttrell, C. Olson, B. Sana, D. Sheahan,
L. Spracklen, and A. Wynn. UltraSPARC T2: A highly-treaded, power-
efficient, SPARC SOC. pages 22 –25, nov. 2007.

[12] Y. Le Moullec, C. Leroux, E. Baud, and P. Koch. Power consumption
estimation of the multi-threaded xinc processor. pages 210 – 213, nov.
2004.

[13] David Fotland. Ubicom’s MASI Wireless Network Processor, 2003.
[14] R. Moussali, N. Ghanem, and M.A.R. Saghir. Microarchitectural En-

hancements for Configurable Multi-Threaded Soft Processors. In Field
Programmable Logic and Applications, 2007. FPL 2007. International
Conference on, pages 782 –785, aug. 2007.

[15] A. Agarwal, R. Bianchini, D. Chaiken, F.T. Chong, K.L. Johnson,
D. Kranz, J.D. Kubiatowicz, Beng-Hong Lim, K. Mackenzie, and
D. Yeung. The MIT Alewife Machine. Proceedings of the IEEE,
87(3):430 –444, mar 1999.

[16] B. Boothe and A. Ranade. Improved Multithreading Techniques for
Hiding Communication Latency in Multiprocessors. In Computer Archi-
tecture, 1992. Proceedings., The 19th Annual International Symposium
on, pages 214 –223, 1992.

[17] K. Tanaka. PRESTOR-1: a processor extending multithreaded ar-
chitecture. In Innovative Architecture for Future Generation High-
Performance Processors and Systems, 2005, page 8 pp., jan. 2005.

[18] Panit Watcharawitch and C Panit Watcharawitch. MulTEP: Multi-
Threaded Embedded Processors. In In An International Symposium
on Low-Power and High-Speed Chips (Cool Chips) IV, volume I.
IEEE/IEICE/IPSJ/ACM SIGARCH Computer Society, 2003.

[19] Simon W. Moore. Multithreaded Processor Design. Kluwer Academic
Publishers, Norwell, MA, USA, 1996.

[20] John L. Hennessy and David A. Patterson. Computer Architecture,
Fourth Edition: A Quantitative Approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2006.


