
Comparison of different thread scheduling strategies
for Asymmetric Chip MultiThreading architectures

in embedded systems
Charly Bechara and Nicolas Ventroux

CEA, LIST,
Embedded Computing Laboratory,

Gif-sur-Yvette, F-91191, FRANCE;
Email: charly.bechara@cea.fr

Daniel Etiemble

Université Paris Sud,
Laboratoire de Recherche en Informatique,

Orsay, F-91405, FRANCE;

Abstract—Future embedded systems will have to support
multiple and concurrent dynamic compute-intensive applica-
tions. These variable workloads can be handled by an efficient
asymmetric MPSoC architecture, which integrates multithreaded
processors as key processing elements. In this paper, we consider
an asymmetric MPSoC architecture with a centralized controller
and multiple multithreaded processors, which we call A-CMT
(Asymmetric Chip MultiThreading). The centralized controller
can implement 2 main types of thread scheduler architectures:
VSMP (Virtual Symmetric MultiProcessing), and SMTC (Sym-
metric Multi-Thread-Context). Each type can have a static or
dynamic allocation. We show that static scheduling for the A-
CMT with dynamic applications (such as connected component
labeling) can become a bottleneck for the overall architecture’s
performance, which leverages the use of dynamic scheduling for
VSMP and SMTC. The dynamic SMTC gave a maximum of 51%
and 11% speedup compared to the static SMTC and dynamic
VSMP respectively.

Keywords: Embedded systems, asymmetric MPSoC, multi-
threaded processors, VSMP, SMTC, thread scheduling, dynamic
applications

I. INTRODUCTION

The emergence of new embedded applications for mobile,
telecom, automotive, digital television and multimedia do-
mains, has fueled the demand for architectures with higher
performances, more chip area and power efficiency. These
complex applications are usually characterized by their com-
putation intensive workloads, their high-level of parallelism,
and their dynamism.

These types of embedded applications necessitate archi-
tectures that support a multithreaded execution environment
and exploit the parallelism at the thread level (TLP), where
multiple software threads can be executed in parallel on mul-
tiple execution resources. Designers are thus showing interest
in System-on-Chip (SoC) paradigms composed of multiple
execution resources and networks that are highly efficient in
terms of latency and bandwidth. The resulting new trend in
architectural design is the MultiProcessor SoC (MPSoC) [6].

Most of the embedded systems applications are dynamic,
which implies that the total execution time can highly vary

with respect to the input data. Thus, optimal static tasks
partitioning cannot exist on these MPSoC architectures, since
the tasks processing times depend on the input data and cannot
be known at compile-time. The only optimal solution consists
in dynamically allocating tasks according to the availability of
computing resources. This is mainly achieved by a centralized
controller, which handles the scheduling and allocation of
tasks on multiple cores, and maintains a balanced system load
by supporting the preemption and migration of tasks between
the processors. Such architectures are called asymmetric MP-
SoC. The centralized controller can be a dedicated HW IP
core or a programmable processor reserved for management
of tasks and resources, such as the SCMP architecture [15].

These MPSoC architectures consist of multiple cores that
can each execute one software thread at a time. However, re-
cent studies [8] show that the processor pipeline can be stalled
up to 75% of its execution time because of long latency events
such as cache misses, I/O response, and data synchronization
between threads. A multithreaded processor [14] provides the
hardware resources and mechanisms to concurrently execute
several threads on one processor in order to increase its
pipeline utilization, hence the application throughput. The
threads compete for the shared resources, tolerate the long
latency events and increase the efficiency of the architecture.
Multithreading can be applied on single-issue scalar processor
architecture such as interleaved multithreading (IMT) [11] and
blocked multithreading (BMT) [9], and wide-issue superscalar
processors such as simultaneous multithreading (SMT) [13].
For embedded systems, hardware architects are mainly inter-
ested in scalar multithreaded cores due to their small footprint
and high energy efficiency. For instance, the MIPS34K [12]
and Infineon TriCore 2 [1] are two examples of commercial
multithreaded IP cores for embedded systems.

Efficient thread scheduling on multiple multithreaded
processors is a critical part for the overall architecture
performance and might lead to severe drawbacks. In this
paper, we evaluate 4 types of thread scheduling techniques
for asymmetric MPSoC architectures, consisting of one

centralized controller and multiple multithreaded cores. We
refer to this type of architecture as A-CMT (Asymmetric Chip
MultiThreading). To study the efficiency of the schedulers
regarding dynamic applications, we implement the connected
component labeling application that is highly used in the
embedded vision domain. This application is particularly
relevant to this study in terms of dynamism, parallelism and
control dependencies.

The main contributions of this paper are:
• Implementation of 4 thread scheduling algorithms for

an asymmetric MPSoC architecture with multiple mul-
tithreaded processors (A-CMT)

• Performance comparison of the 4 algorithms using a
dynamic application from the embedded systems domain
(real-case scenario)

• Recommendation on the best thread scheduling algorithm
for A-CMT architectures executing dynamic applications

This paper is organized as follows: Section II presents the A-
CMT architecture used in this study, and section III discusses
the 4 types of thread schedulers for A-CMT evaluated in
this work. Section IV describes the modeling and simulation
frameworks, while a case study from the embedded vision
domain that shows the advantages and limitations of each of
the thread scheduler architectures is conducted in section V.
And finally, section VI concludes this paper by discussing the
present results along with future works.

II. A-CMT STRUCTURE

As mentioned earlier, we consider in our study an asym-
metric MPSoC architecture, which consists of a centralized
controller and multiple multithreaded processors connected to
a shared memory. We call this architecture A-CMT, which
stands for Asymmetric Chip MultiThreading, and it is de-
scribed in Figure 1.

This architecture is composed of 3 main parts:
1) PE MT system: It consists of multiple multithreaded

cores. Each core is a scalar in-order processor. It can
process multiple Thread Contexts (TC) concurrently,
where each TC is a virtual processor. In this work,
we consider the case of 2 TCs per multithreaded core,
which is suitable for embedded systems requirements.
A Local Thread Scheduler (LTS) synchronizes the ex-
ecution of the tasks on multiple TCs according to the
PE MT’s multithreading policy. Since it is a scalar in-
order processor, only one instruction is allowed to be
processed from one task at a time. For instance, an IMT
core processes the instructions in a round-robin manner
between the available TCs, while a BMT core switches
between the instructions of the available TCs whenever
one is stalled on a long latency event, such as a cache
miss. Each TC state is sent to the centralized controller.
The TC state can be either running normally, blocked on
cache miss or I/O, or waiting for an execution demand.

Global Thread Scheduler

Memory

Bus

[EXEC;
PREEMPT;
STOP]

[RUNNING;
BLOCKED;
WAITING]

TLB

PE_MT1

I$ D$

TCM

LTS

TLB

PE_MT2

I$ D$

TCM

LTS

TLB

PE_MTn

I$ D$

TCM

LTS

Figure 1. A-CMT architecture consisting of a centralized controller
or global thread scheduler, and multiple multithreaded processors, all
sharing a memory

Based on these values, the controller has a more global
view on all the cores’ status and can perform the right
scheduling decision. Each PE MT has a shared TLB
for all the TCs for proper virtual to physical address
translation, and it is connected to a L1 Instruction
memory cache (I$) and Data memory cache (D$). In
our architecture, the L1$ is segmented per TC in order
to limit cache interferences.

2) Centralized Controller: It is a dedicated programmable
processor that holds all the information of the applica-
tion tasks in a special local memory. It runs a scheduling
algorithm that schedules and allocates the tasks on the
PE MTs. The allocation decision is based on each TC
status and the implemented thread scheduling strategy. It
sends an execution, preemption or stop task demand on
the corresponding TC. The reactivity of the controller is
a key metric for low scheduling overheads. In section III,
we will show the different scheduling strategies that are
implemented in the controller and their overhead cost.

3) Memory system: It consists of a 2-level memory hier-
archy: a private L1$ per PE MT and a shared memory.
They are connected by a bus that transfers the memory
requests of all the PE MTs to the shared memory. We
assume that the shared memory has enough space to
store all the application’s tasks code and data prior to
execution.

III. THREAD SCHEDULING STRATEGIES FOR A-CMT

The objective of a thread scheduler is to keep busy all the
underlying execution resources and balance the load perfectly
between them. It holds the information of all the SW threads
that can be executed on the processors in a runqueue. For
the case of a multicore system and a SMP OS such as Linux
SMP, the scheduler creates a runqueue per core. Tasks are
migrated periodically from one runqueue to another whenever

a workload imbalance occurs. This works fine with mono-
threaded cores. However, for multithreaded cores, it is not
clear which scheduling technique fits better: whether to assign
one runqueue per multithreaded core (VSMP) or one runqueue
per thread context (SMTC), the objective is the same, keeping
all the multithreaded cores active.1 A multithreaded core is
active if it has at least one active TC. For each scheduler
architecture, we implement static and dynamic allocation.

A. VSMP

VSMP or Virtual SMP is an OS scheduler architecture
that creates one runqueue per core (see Figure 2). If there
is one TC per core (monothreaded processor), the scheduler
converges to normal SMP. But in case of multiple TCs per core
(multithreaded processor), only one runqueue is assigned to all
the TCs. Then, it is up to the LTS to guarantee an efficient
dispatching of the tasks to the free TCs.

The main advantage of VSMP is its rapid deployment.
Only small modifications to the SMP OS need to be done.
However, the scheduler does not have a global view of the
workload balance between the TCs and the cores, which
might be penalizing in some cases. Consider for example 2
PE MTs with 4 TCs each, if PE MT1 has 3 active TCs and
PE MT2 has 1 active TC, then the VSMP scheduler will treat
both multithreaded processors equally, since both of them are
active.

Global Thread Scheduler
VSMP

PE_MT1

TCM

LTS

PE_MT2

TCM

LTS

PE_MTN

TCM

LTS

RQ RQ RQ

Load Balancing (static/dynamic)

1 2 N

Figure 2. VSMP scheduler architecture

1) Static VSMP: For static VSMP, a task is allocated on
a runqueue based on its identifier using the modulo operator.
No task is allowed to migrate to other runqueues.

2) Dynamic VSMP: For dynamic VSMP, the scheduler
scans the execution status of all the PE MTs. If a multi-
threaded core is active and another one is free, it migrates
a task from the active to the free runqueue. However, as

1We adopt the same terminologies used for Linux SMP ported to MIPS
34K [2]: VSMP (Virtual Symmetric MultiProcessing), and SMTC (Symmetric
Multi-Thread-Context)

stated earlier, the scheduling decision does not take into
consideration the exact load of each PE MT.

B. SMTC

Global Thread Scheduler
SMTC

PE_MT1

TCM

LTS

PE_MT2

TCM

LTS

PE_MTN

TCM

LTS

RQ

Load Balancing (static/dynamic)

RQ RQ RQ RQ RQ

1 M M+1 2M (N-1).M+1 N.M

Figure 3. SMTC scheduler architecture

SMTC or Symmetric Multi-Thread-Context is an OS sched-
uler architecture that creates one runqueue per TC (see Figure
3). The scheduler has a more global and correct view of
the real physical hardware. Depending on the TC state, the
scheduler is able to know which PE MT is active and by how
much load, which facilitates the global workload balancing.
This will relieve the LTS from doing local task allocation and
concentrate only on its scheduling policy (interleaved, blocked,
etc...). Since more execution states information are available,
the scheduling time might take a little longer than in VSMP
but this is not critical due to the possible gain we can have.

1) Static SMTC: For static SMTC, tasks are allocated on
each TC runqueue based on its identifier using the modulo
operator, and no load balancing is allowed. This implies
that the LTS has no local scheduling role, since the tasks
are already predefined where they will execute. This can be
penalizing, since all the TCs are treated equally as a virtual
processor which might lead to severe load imbalance (see
Section V-B).

2) Dynamic SMTC: For the dynamic SMTC scheduler,
the native SMP scheduler code needs to be modified and
rethought. At the beginning of a scheduling cycle, the con-
troller receives the execution state of all the TCs. Then, it
executes the scheduling algorithm that is decomposed into 3
main parts: sorting, allocation, and verification.
The first phase creates a sorting list of the tasks that are ready
to be allocated and executed. The sorting decision depends on
the task priority and execution state. For example, a blocked
task is put at the end of the sorting list. Then, the first
NB PE tasks are chosen to be allocated, where NB PE is the
maximum number of TCs available in the architecture. For
instance, 4 PE MTs with 2 TCs each has NB PE equal to 8.
The second phase allocates the tasks on the runqueue of each

TC. Here, the scheduling algorithm has 2 different views of
the A-CMT architecture: virtualized mode and non-virtualized
mode. In the virtualized mode, the execution state of all the
TCs of one PE MT are grouped together in order to form a
common architectural state of the PE MT. A PE MT is active
if at least one TC is active, and an A-CMT architecture is
executing efficiently if all the PE MTs are active. Accordingly,
ready tasks are allocated on the corresponding TCs runqueue
that turns a PE MT into active. If all the PE MTs has at least
one active TC and there are still ready tasks in the sorting list,
then the scheduling algorithm switches to the non-virtualized
mode. In this case, a ready task is allocated on a runqueue of
a free TC.
The final phase verifies if the multithreaded processors are
well-balanced. For example, consider a system of 2 PE MTs
with 4 TCs each. If PE MT1 has 3 active TCs and PE MT2
has 1 active TC, then the dynamic SMTC scheduler will allow
the migration of tasks from runqueue TC2 of PE MT1 to
runqueue TC1 of PE MT2. This scenario is not possible for
the VSMP scheduler.

IV. EXPERIMENTAL SETUP

The A-CMT architecture is implemented in the SESAM
framework [16], [17], which is a SystemC framework for
modeling and exploration of asymmetric MPSoC architectures.

Initially, SESAM infrastructure consists of several Sys-
temC instruction-set simulators (ISS) for the MIPS1 R3000,
MIPS32, SPARC and other monothreaded processor architec-
tures. Recently, we supported SESAM with a cycle-accurate
multithreaded ISS based on MIPS1 ISA [4]. It implements the
blocked multithreading protocol and it has 2 thread contexts. In
fact, as implementing more than 2 TCs for a small footprint
RISC processor would almost double the processor area, it
would be better to duplicate the number of multithreaded
processors instead of the number of TCs per multithreaded
processor. For instance, the MIPS 1004K [3] and TriCore 2
[1] implements 2 TCs per PE MT.

The centralized controller sees each ISS as one execution
resource. Thus, we added virtualization support to the SESAM
framework, so that the centralized controller is aware of the
TCs in each multithreaded ISS. In SESAM, a parallelized ap-
plication is cut manually into several SW tasks. Their control
and data dependencies are represented in a Control Data Flow
Graph (CDFG), which is described manually with a simple
dedicated assembly language. Each transition represents an
execution constraints that imposes the task execution order.
Then, a parser generates the binary from the CDFG file,
which is fed to the centralized controller. Each SW task is
a standalone program and the binaries are generated by the
MIPS gcc 4.2.3 cross-compiler.

As for the memory system, we consider that a L1$ hit takes
1 cycle and a memory access time takes a minimum of 6
cycles in case of no bus contentions. Otherwise, the access
time increases depending on the number of cores accessing
the shared memory simultaneously.

(a) Pedestrian1 (b) Pedestrian2

(c) Pedestrian3

T1 T2 T3 T4

T5 T6 T7 T8

T9 T10 T11 T12

T13 T14 T15 T16

(d) Sub-image to task number

Figure 4. Figure a) b) c) 3 images of 2 pedestrians crossing
the road. Figure d) shows the sub-images decomposition and their
corresponding task number

V. CASE STUDY

To measure the A-CMT performance for dynamic embedded
applications, we consider an application called ADAS (Ad-
vanced Driver Assistance Systems). It consists of a camera
installed in the car that detects humans on the roads, in order
to detect a pre-crash situation. This is a critical application for
automotive systems and is particularly relevant to this study
in terms of dynamism, parallelism and control dependencies.

In ADAS, one part of the obstacle detection process is
the connected component labeling algorithm. The labeling
algorithm transforms a binary image into a symbolic image,
so that each connected component is uniquely labeled based
on a given heuristic. It detects unconnected regions in binary
images. Various algorithms have been proposed [7] [10], but
we have chosen an algorithm using contour tracing technique
[5]. The initial algorithm is parallelized by creating indepen-
dent tasks with control dependencies explicitly represented in
a CDFG. To get multiple independent tasks, we cut the image
into sub-images and applied the algorithm on each sub-image.
Then, we carried out successively a vertical and a horizontal
fusion of labels in analyzing frontiers between sub-images,
and finally we constructed the corresponding tables between
labels and changed in parallel all labels into sub-images. As
input images, we used a 128x128 pixel image, cut into 16
8x8 sub-images. This implies that the maximum parallelism
is 16. The input images are a sequence of 3 images taken
at different time intervals. They show 2 pedestrians crossing
the road (Figure 4(a),4(b),4(c)), and they are close to the car
(about 10 meters). The labeling algorithm is implemented on
each image.

For all the experiments, the number of PE MTs varies
between 1 and 8, where each PE MT has 2 TCs. The L1 I$ and
D$ size is fixed to 2KB, which gives a cache miss rate around
10% for the connected component labeling application. In fact,

since the blocked multithreading policy is implemented, all the
TCs will execute only if there are enough pipeline stalls (i.e.
cache misses).

A. Dynamism of the application

The computation requirement differs for the 3 images as
shown in Figure 5. Pedestrian3 image takes about 3 times
more processing than pedestrian1 image. Pedestrian1 image
has 25% of its sub-images executing the labeling code, since
the others are black sub-images (non-balanced workload).
Similarly, pedestrian2 image has 50% (semi-balanced work-
load) and pedestrian3 has 100% (fully-balanced workload).
This behavior reveals the dynamism of the connected compo-
nent labeling application with respect to the input data.

Execution time v/s input image

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

Pedestrian1 Pedestrian2 Pedestrian3

E
x

e
c

u
ti

o
n

 t
im

e
 (

c
y

c
le

s
) x 3

Figure 5. Dynamic behavior of labeling application when executing
the 3 pedestrian images

B. Static v/s dynamic thread scheduling

In this experiment, we compare the static and dynamic
algorithms of the VSMP and SMTC thread scheduling archi-
tectures, shown in Figure 6(a) and 6(b) respectively. In these
figures, we plot the number of execution cycles of the static
and dynamic algorithms for the 3 pedestrian images. The input
image is cut into 16 sub-images, and the labeling tasks of each
sub-image are allocated first horizontally then vertically. The
sub-images identifiers are set from 1 to 16 respectively as
shown in Figure 4(d). For example, in the pedestrian1 image
(Figure 4(a)), the tasks [T1,T5,T9,T13] contain pixels that
need to be processed by the labeling algorithm, which implies
more processing times.

The first observation is related to the type of the input image.
We can clearly notice that for both VSMP and SMTC, and
for a balanced workload (pedestrian3 image), the difference
between static and dynamic is not significant (less than 10%).
However, when the workload is more unbalanced (pedestrian1
and pedestrian2 images), the dynamic algorithm reaches a
maximum speedup of 40% and 51% compared to the static
algorithm, for VSMP and SMTC respectively. In real-case
scenarios, we expect on average a semi-balanced workload
similar to pedestrian2 image.

For the VSMP scheduler, there is one runqueue per PE MT.
This implies that the execution time for static and dynamic
VSMP should be similar for 1 PE MT and independent of
the input image, which is confirmed in Figure 6(a). As for
8 PE MTs, the performance is also similar for static and
dynamic VSMP. In fact, VSMP allocates 2 tasks on each
runqueue in the same way for static and dynamic algorithm.
The LTS of each PE MT is responsible of dispatching these
2 tasks on one of its 2 TCs. If one TC finishes execution
before the other, the PE MT is still considered as active,
and the dynamic VSMP cannot balance the load between
the runqueues since it does not see the actual workload
per PE MT. However, for 2 and 4 PE MTs, the dynamic
VSMP outperforms the static VSMP. The maximum speedup
reaches 40% for the pedestrian1 image, and goes down
to 36% and 7% for pedestrian2 and pedestrian3 images
respectively. For instance, let’s take the configuration of
4 PE MTs and pedestrian1 image. If PE MT1{TC1},
PE MT2{TC2}, PE MT3{TC3}, and PE MT4{TC4};
then TC1=[T1,T5,T9,T13]; TC2=[T2,T6,T10,T14];
TC3=[T3,T7,T11,T15]; TC4=[T4,T8,T12,T16]. Thus, it
can be clearly seen that all the heavy computation tasks are
assigned to TC1 runqueue for the static VSMP scheduler. On
the other hand, the dynamic VSMP is able to move those
tasks to other free runqueues and balance the load effectively.

For the SMTC scheduler, there is one runqueue per TC
(in our case 2 runqueues per PE MT). This explains the
speedup for 1 and 8 PE MTs configurations as shown
in Figure 6(b). In fact, the dynamic SMTC scheduler is
able to see the exact occupation rate of each TC and
balance the workload between the runqueues to exploit the
multithreaded processor performance. For example, let’s
consider the case of 1 PE MT{TC1,TC2} with pedestrian1
image: all the heavy computation tasks are allocated on
TC1 runqueue in the static SMTC version. This means
that TC2 runqueue will be processed much faster than
TC1, and the remaining tasks on TC1 will not be migrated
in the static version, which is not the case for dynamic
SMTC. As for 2 and 4 PE MTs, the dynamic SMTC
reaches a maximum speedup of 51% for the pedestrian1
image compared to the static SMTC. To understand
better the reason for this large performance difference,
let’s consider the case for 2 PE MTs with pedestrian1
image. If PE MT1{TC1,TC3} and PE MT2{TC2,TC4};
then TC1=[T1,T5,T9,T13]; TC2=[T2,T6,T10,T14];
TC3=[T3,T7,T11,T15]; TC4=[T4,T8,T12,T16]. Again, in
static SMTC, the heavy computation tasks are assigned to
TC1 runqueue, which dispatches the tasks to only one thread
context of PE MT1. On the other hand, the dynamic SMTC
scheduler is able to perform better load balancing and gives
a speedup of 51% for this configuration.

C. VSMP v/s SMTC

In Figure 6(c), we compare the dynamic algorithm of VSMP
and SMTC for the 3 pedestrian images. In all the configu-
rations, the dynamic SMTC has a better performance than

(a)

VSMP static v/s dynamic

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

1 2 4 8 1 2 4 8 1 2 4 8

of PE_MT

c
y

c
le

s

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

VSMP static
VSMP dynamic
% speedup

(b)

SMTC static v/s dynamic

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

1.60E+08

1 2 4 8 1 2 4 8 1 2 4 8

of PE_MT

c
y

c
le

s

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

SMTC static
SMTC dynamic
% speedup

(c)

VSMP v/s SMTC dynamic

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

1 2 4 8 1 2 4 8 1 2 4 8

of PE_MT

c
y

c
le

s

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

VSMP dynamic
SMTC dynamic
% speedup

(d)

Thread scheduler v/s scheduling loop

12000

13000

14000

15000

16000

17000

18000

19000

20000

21000

22000

1 2 4 8

of PE_MT

c
y

c
le

s

VSMP static

VSMP dynamic

SMTC static

SMTC dynamic

Figure 6. Performance comparison of the different thread scheduling strategies: a) VSMP static v/s dynamic. b) SMTC static v/s dynamic.
c) VSMP dynamic v/s SMTC dynamic. d) Thread scheduler v/s number of clock cycles per scheduling loop. The speedup line in the first 3
figures is the speedup with respect to the same configuration.

dynamic VSMP. The speedup varies between 1% and 11%.
Again, the speedup is more important for non-balanced and
semi-balanced workloads, since the runqueues contain tasks
with different computation requirements. This necessitates a
more optimal load balancing from the global thread sched-
uler, which favors the dynamic SMTC on dynamic VSMP.
In addition, the speedup is higher for the cases with large
number of multithreaded processors (PE MT = 8). In fact,
when the number of multithreaded processors increases, the
complexity of finding the optimal scheduling decision also
increases. This is due to the fact that the scheduling decision
for multiple multithreaded processors is different and more
complex than monothreaded processors. It requires an effective
and reactive global thread scheduler for proper load balancing
between the runqueues. Hence, dynamic SMTC gives superior
performance on dynamic VSMP, and this difference would be
more important if the number of TCs per PE MT is bigger
than 2.

D. Scheduling overhead

Finally, in Figure 6(d), we compare the complexity of the
4 types of thread schedulers. The results show the aver-
age number of cycles taken to complete a scheduling loop.

As expected, the static versions take less time to finish a
scheduling loop compared to their corresponding dynamic
versions. One clear observation is that the time to complete a
scheduling loop for the SMTC dynamic is much longer than
VSMP dynamic, especially when the number of multithreaded
processors increases (around 4000 clock cycles difference
when considering 8 PE MTs). The difference is expected
to increase more when the number of TC per PE MT is
bigger. This result is not surprising, since the dynamic SMTC
algorithm has one runqueue per TC, thus performing more
tests in order to choose the best TC’s runqueue to allocate
the SW task (see Section III-B2). In fact, the SMTC has a
complexity of O(NxM), while VSMP is O(N), where N is the
number of multithreaded processors and M is the number of
TCs per PE MT. But, as we saw previously from the results,
the scheduling overhead does not impact the performance,
since in an asymmetric CMT architecture, the global thread
scheduler executes in parallel to the computation. On the other
hand, in a symmetric approach, the scheduler executes on
the same processor as the computation and hence needs to
finish the scheduling loop as fast as possible. This implies that
the centralized scheduler in an asymmetric CMT architecture

can implement more complex scheduling algorithms without
performance drop. For instance, the scheduling overhead with
respect to the effective execution time of the processors
reaches a maximum of 10% for 8 PE MTs and for all the
scheduling strategies.

VI. CONCLUSION

This paper has presented a comparison between 4 dif-
ferent thread scheduler architectures for asymmetric MPSoC
architectures, consisting of one centralized controller and
multiple multithreaded processors (2 Thread Contexts) with
local segmented L1$ memories and a shared memory. The
studied MPSoC architecture is called A-CMT, which stands for
Asymmetric Chip MultiThreading, and it is used for embedded
dynamic applications.

We studied the VSMP and SMTC schedulers suitable for
multiple multithreaded processors. Both schedulers were im-
plemented with a static and dynamic allocation of the tasks
on the runqueues. The dynamic scheduling algorithm has
proven its efficiency and superiority in performance compared
to the static algorithm, for applications with high degree of
parallelism and dynamism, such as the connected component
labeling. A real-case scenario that applies the labeling algo-
rithm on 3 images of 2 pedestrians crossing the road was
conducted. The input images have different workloads. For
instance, the dynamic VSMP and SMTC gave a maximum
speedup of 40% and 51% compared to their corresponding
static versions. Finally, the dynamic SMTC has proven to
be the best thread scheduler for A-CMT architecture with a
maximum speedup of 11% compared to dynamic VSMP.

For future enhancements, we aim to extend the number
of thread contexts per multithreaded processor and explore
the efficiency of the A-CMT architecture for high-end server
applications.

REFERENCES

[1] Infineon tricore2. http://www.infineon.com/.
[2] Linux mips 34k: http://www.linux-mips.org/wiki/34k.
[3] Mips 1004k. http://www.mips.com/products/cores/32-64-bit-

cores/mips32-1004k/.
[4] C. Bechara, N. Ventroux, and D. Etiemble. A tlm-based multithreaded

instruction set simulator for mpsoc simulator environment. In 3rd
Workshop on Rapid Simulation and Performance Evaluation: Methods
and Tools (RAPIDO 2011), Held in conjunction with the 6th Interna-
tional Conference on High-Performance and Embedded Architectures
and Compilers (HiPEAC), January 2011.

[5] C. C. F. Chang and C. Lu. A Linear-Time Component-Labeling
Algorithm Using Contour Tracing Technique. Computer Vision and
Image Understanding, 93(2):206–220, 2004.

[6] A. A. Jerraya and W. Wolf. Multiprocessor Systems-on-Chips. 978-0-
12-385251-9. Elsevier, 2005.

[7] I. H. K. Suzuki and N. Sugie. Linear-time connected-component labeling
based on sequential local operations. Computer Vision and Image
Understanding, 89(1):1–23, 2003.

[8] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way
multithreaded sparc processor. IEEE Micro, 25(2):21–29, 2005.

[9] J. Kreuzinger and T. Ungerer. Context-switching techniques for decou-
pled multithreaded processors. volume 1, pages 248 –251 vol.1, 1999.

[10] L. Lacassagne and B. Zavidovique. Light speed labeling: efficient
connected component labeling on risc architectures. Journal of Real-
Time Image Processing, pages 1–19, 2009. 10.1007/s11554-009-0134-0.

[11] J. Laudon, A. Gupta, and M. Horowitz. Interleaving: a multithreading
technique targeting multiprocessors and workstations. In ASPLOS-
VI: Proceedings of the sixth international conference on Architectural
support for programming languages and operating systems, pages 308–
318, New York, NY, USA, 1994. ACM.

[12] MIPS. Programming the MIPS32 R© 34K Core Family. Technical report,
MIPS Technology, 2005.

[13] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multi-
threading: maximizing on-chip parallelism. In ISCA ’98: 25 years of
the international symposia on Computer architecture (selected papers),
pages 533–544, New York, NY, USA, 1998. ACM.

[14] T. Ungerer, B. Robic, and J. Silc. Multithreaded processors. The
Computer Journal, 45:320–348, 2002.

[15] N. Ventroux and R. David. The scmp architecture: A heterogeneous
multiprocessor system-on-chip for embedded applications. Eurasip,
2009.

[16] N. Ventroux, A. Guerre, T. Sassolas, L. Moutaoukil, G. Blanc,
C. Bechara, and R. David. Sesam: An mpsoc simulation environment
for dynamic application processing. In Computer and Information
Technology (CIT), 2010 IEEE 10th International Conference on, pages
1880 –1886, July 2010.

[17] N. Ventroux, T. Sassolas, R. David, G. Blanc, A. Guerre, and C. Bechara.
Sesam extension for fast mpsoc architectural exploration and dynamic
streaming applications. In VLSI System on Chip Conference (VLSI-SoC),
2010 18th IEEE/IFIP, pages 341 –346, sept. 2010.

