Towards a Parameterizable Cycle-Accurate ISS in
ArchC

Charly BECHARA and Nicolas VENTROUX

CEA, LIST,
Embedded Computing Laboratory,
Gif-sur-Yvette, F-91191, FRANCE;
Email: charly.bechara@cea.fr

Abstract—With the increase in the design complexity of MP-
SoC architectures, flexible and accurate processor simulators
became a necessity for exploring the vast design space solutions.
In this paper, we present a flexible cycle-accurate ISS model based
on ArchC 2.0 language. The model can have a variable pipeline
depth and can be integrated easily in any SoC design based on
SystemC. Its performance and capabilities are demonstrated by
running MiBench embedded benchmark suite, while extracting
pipeline statistics for each application.

keywords: ISS, cycle-accurate, System-on-Chip, ADL, Design
Space Exploration

I. INTRODUCTION

The emergence of new embedded applications for telecom,
automotive, digital television and multimedia applications, has
fueled demand for architectures with higher performances,
more chip area and more power efficiency. These applications
are usually computation-intensive, which prevents them from
being executed by general-purpose processors. Thus, designers
are showing interest in a System-on-Chip (SoC) paradigm
composed of multiple processors and a network that is highly
efficient in terms of latency and bandwidth. The resulting
new trend in architectural design is the MultiProcessor SoC
(MPSoC) [1]. MPSoCs’ architectures can have homogeneous
or heterogeneous processors, depending on the application
requirements. Choosing the best processor among hundreds
of available architectures, or even designing a new processor,
requires the evaluation of many different features (pipeline
structure, ISA description, register files, processor size...), and
the architect needs to explore different solutions in order to
find the best trade-off. The processor Instruction Set Simulator
(ISS), which its role is very important, must have the following
features: it should be parameterizable, fast and accurate, and
be able to be integrated easily in the MPSoC simulation
environment.

The ISS emulates the behavior of a processor by executing
the instructions of the target processor while running on a
host computer. Depending on the abstraction level, it can
be modeled at the functional or cycle-accurate level. The
functional ISS model abstracts the internal hardware archi-
tecture of the processor (pipeline structure, register files...)
and simulates only the ISA. Therefore, it can be available
in the early phase of the MPSoC design for the application

Daniel ETIEMBLE

Université Paris Sud,
Laboratoire de Recherche en Informatique,
Orsay, F-91405, FRANCE;

Email: daniel.etiemble @Iri.fr

software development, where the simulation speed and the
model development time are an important factor for a fast
design space exploration. Despite all these advantages, many
details are hidden by the functional ISS model, such as
the pipeline stalls, branch/data hazards and other parameters,
which tend to be non-negligible while sizing the architecture.
Those parameters evaluate the accurate performance of the
processor and the surrounding hardware blocks such as caches,
busses, and TLBs. The cycle-accurate ISS model simulates
the processor at an abstraction level between the RTL and the
functional model. It presents most of the architectural details
that are necessary for processor dimensioning, in order to
evaluate in advance its performance capabilities in the MPSoC
design. All these advantages come at the expense of its slower
simulation speed and longer development time.

The pipeline depth is one important parameter for processor
sizing. A deeper pipeline using more pipeline stages allows a
higher clock frequency. On the other hand, a deeper pipeline
leads to increased load-use latencies, increased branch laten-
cies and mispredicted branch penalties. In any case, multi-
cycle instructions, such as integer multiplication and division
and all the floating-point instructions are mandatory. The
evaluation of processor performance when varying the number
of execute stages in the processor pipeline cannot be avoided.

This paper investigates the ability of the cycle-accurate ISS
model to be used as part of design space explorations. For this
reason, we developed a variable pipeline depth model with
pipeline statistics extraction.

The paper is organized as follows: Section II discusses
related works on different types of ADLs and motivates the
reason to chose ArchC language. Then, section III gives
an overview of the R3000 cycle-accurate ISS in ArchC.
Section IV describes the modifications done for the R3000
architecture, ISA description file and ArchC tool in order to
generate a variable pipeline depth ISS model, while section
V highlights the statistics and debugging logs that the model
generates. The R3000 architecture is taken as an example
and our approach can be easily deployed for other ISAs such
as SPARC and ARM. Section VI illustrates the performance
results obtained by running MiBench embedded benchmark
suite [2], and compare them to those of the functional model.

Finally, section VII concludes the paper by discussing the
present work along with future works.

II. RELATED WORK

The main part of an MPSoC simulator is the architecture
description language (ADL), which generates an ISS in a
specific level of abstraction. ADLs’ modelisation levels are
classified into three categories: structural, behavioral, and
mixed.

Structural or cycle-accurate ADLs describe the processor
at a low abstraction level (RTL) with a detailed description
of the hardware blocks and their interconnection. These tools,
such as MIMOLA [3], are mainly targeted for synthesis and
not for design space exploration due to their slow simulation
speed and lack of flexibility.

On the contrary, behavioral or functional ADLs abstract
the microarchitectural details of the processor, and provide
a model at the instruction set level. Its low accuracy is
compensated by its fast simulation speed. Many languages
exist such as nML [4] and ISDL [5].

Therefore, mixed ADLs provide a compromise solution and
combine the advantages of both the structural (accuracy) and
behavioral (simulation speed) ADLs. It is the best abstrac-
tion layer for design space exploration. EXPRESSION [6],
MADL[7], LISA [8], and ArchC[9] are an example of mixed
ADLs. The last two will be discussed in this literature review.

LISA, which stands for Language for Instruction Set Archi-
tecture, is developed by the university of RWTH Aachen and
is currently used in commercial tools for ARM and CoWare
(LISATek). Processor models can be described in two main
parts: resource and operation declarations (ISA). Depending
on the abstraction level, the operations can be defined either
as a complete instruction, or as a part of an instruction. For ex-
ample, if the processor resources are modelled at the structural
level (pipeline stages), then the instructions’ behavior in each
of the pipeline stages should be declared. Hardware synthesis
is possible for structural processor models.

A recent type of processor description language called
ArchC [10] is gaining special attention from the research
communities [11], [12], [13]. ArchC 2.0 is an open-source
Architecture Description Language (ADL), developed by the
university of Campinas in Brazil. It generates from processor
and ISA description files, a functional or cycle-accurate ISS in
SystemC. The ISS is ready to be integrated with no effort in a
complete SoC design based on SystemC [14]. In addition, the
ISS can be easily deployed in a multiprocessor environment
thanks to the interruption mechanism based on TLM, which al-
lows the preemption and migration of tasks between the cores.
The main distinction of ArchC is its ability to generate a cycle-
accurate ISS with little development time. Only the behavior
description of the ISA requires accurate description. As for
the microarchitectural details, they are generated automatically
according to the architecture resource description file. There
exists also a graphical framework, called PDesigner [15],
based on Eclipse and ArchC processor models, which allows
the development and simulation of MPSoCs in SystemC in a

friendly manner. Since ArchC is an open-source language, we
can modify the simulator generator to produce a processor with
customized microarchitectural enhancements, which makes it
a great tool for computer architecture research [16]. However,
the processor model cannot be synthesized because it is not
supported by ArchC.

In this work, we provide a parameterizable cycle-accurate
ISS model based on MIPS-I ISA as an example. We modified
ArchC 2.0 to generate the model, which is ready to be
integrated in a multiprocessor SystemC environment. In its
first version, we support the variation of the number of EX
stages in the pipeline, without model regeneration and recom-
pilation. Processor performance evaluation is done through the
extraction of pipeline statistics such as the number of stalls,
their penalties and their types (branch/data hazards, memory
access). This will provide the architects new parameters to
dimension the processor according to the target design, which
was not possible before with functional model processors.

IIT. OVERVIEW OF THE R3000 CYCLE-ACCURATE MODEL

The MIPS-I R3000 architecture is a classic 5-stage RISC
processor (IF-ID-EX-MEM-WB) with 32 registers and an
integer pipeline. The implemented MIPS-I ISA is similar to the
optimized version described in [17]. The control instructions
(jump and branch) are executed in the ID stage instead of
the MEM stage, and follow the “predicted-not-taken” branch
mechanism. Register forwarding is also deployed to allow
instructions in the ID or EX stages to get the correct operand
values from instructions that are further in the pipeline and
did not commit yet. Both techniques reduce the number of
pipeline stalls at the expense of adding more logics in the
processor datapath.

ArchC 2.0 provides many advantages that lacked in its
predecessor ArchC 1.6. First of all, it allows the simulator to
be integrated and instantiated multiple times in a full SystemC
platform, hence enabling multiprocessor system simulation.
Second, the simulator is wrapped by a TLM interface to
permit processor interruption and TLM communications with
external modules. Finally, the functional ’acsim’ and cycle-
accurate ’actsim’ simulator generators are implemented sepa-
rately, which eases the development task.

Both functional and cycle-accurate processor models exist
in ArchC 2.0 [9], and they are generated by a separate
Simulator Generator tool. For instance, "actsim’ tool generates
the cycle-accurate simulator. It parses the architecture resource
description (AC_ARCH) and ISA description (AC_ISA) files,
and generates the cycle-accurate simulator and the decoder
accordingly, as illustrated in Figure 1.

Note that the resource and ISA description files must be
described differently for the functional simulator. It is clearly
seen that the cycle-accurate simulator is almost similar to
the actual processor architecture. The pipeline stages, pipeline
registers, register files, PC, and clock are all included in the
simulator.

In our work, we utilize the latest available versions of
“actsim’ timed simulator generator tool included in the ArchC

I:| Pipe stage

—— Instruction flow

13000 isa.ac S Buffer register + Clock signal

MIPS-|

R3000
-y
actsim L 1o EX MEM wB

A a A e
r3000.ac 32 Register Files
I iac_mem
Figure 1. R3000 cycle-accurate model generation by actsim tool

2.0 package, as well as the MIPS-I R3000 cycle-accurate
model (r3000-v0.7.2-archc2.0beta3). Both tools are still in
their beta versions as they contain some bugs. In other words,
the advantages of ArchC 2.0 have not been integrated in the
cycle-accurate simulator. Using ’actsim’ and R3000 model will
allow the exploration of the cycle-accurate ISS performances,
and the implementation of our architectural modifications,
realized through the variable pipeline depth cycle-accurate
processor model.

IV. TOOLS MODIFICATIONS

In this part, we show the modifications done for the cycle-
accurate simulator generator tool ’actsim’ and the MIPS-I
ISA implementation. Those modifications are necessary for
the generation of a variable pipeline depth model, which can
be integrated in a SoC design based on SystemC.

A. Modifications for ArchC 2.0

The initial ’actsim’ generates, for each pipeline stage, a
corresponding SystemC module, which is implemented as
an SC_METHOD sensitive to the main clock. Implementing
the stages as SC_METHOD works fine in a standalone ar-
chitecture, with one processor and cache memory. However,
multiprocessor execution will be impossible since the proces-
sor model will always own the SystemC execution context.
In order to integrate the model in a SoC platform and to
communicate with other SystemC IPs, we modify the stages
to implement an SC_THREAD module and SystemC wait()
function. This solution will not block the other IP modules
from executing at the same clock cycle as the processor. A
pseudo-code for the EX-stage module is shown in Figure 2.

To model the cycle-accurate pipeline correctly, the proce-
dure is implemented as follows: each stage module executes
in a while loop, and synchronizes with SystemC wait(). Only
the first stage (IF) is sensitive to the main clock and to a
synchronization signal (sync), while the others are sensitive to
an input sync sent from the previous stage. When a new clock
signal arrives, the IF-stage executes instruction i, and toggles
the sync at its output. Then the ID-stage, which is sensitive to
the sync from IF-stage, executes instruction i-1, and toggles
its output sync. The same procedure repeats until WB-stage,
which executes instruction i-4, and toggles the sync signal

With SC_METHOD With SC_THREAD

inline void
r3000_G_EX::r3000_G_EX::behavior()

inline void

r3000_G_EX::r3000_G_EX::behavior()
{

/* Get the instruction from the previous while (1) {

stage register ID_EX */

/* Get the instruction from the previous

/* Decode the instruction */ stage register ID_EX */

/* Call the generic instruction behavior */ I* wait (previous stage ID has finished); */

/* Call the format behavior */ /* Decode the instruction */

/* Call the instruction behavior */ /* Call the generic instruction behavior */

/* Send the instruction to the next stage /* Call the format behavior */
register EX_MEM */
} /* Call the instruction behavior */

/* Send the instruction to the next stage
register EX_MEM */

I* notify the next stage MEM that the
results are ready */

}
H

Figure 2. pseudo-code for the EX-stage module

which is connected back to the IF-stage. Finally, the IF-stage
updates the internal pipeline registers and wait() for the next
clock cycle. Note that the pipeline registers are double buffered
for proper instruction execution in each stage. Figure 3 shows
the modified R3000 cycle-accurate model that is generated by
“actsim’. This model can be integrated in a SoC simulator.

l:l Pipe stage — Instruction flow
TLM IIO interface ... > Clock signal
Doqblehuffered » Inter-pipe Sync
register signal
ac_tim_intr_port
MIPS-I
R3000
LF b D] EX
/N
| 32 Register Files
Tac_mem
clk Memory
Figure 3. New R3000 cycle-accurate model for SoC simulator

integration capabilities

The second modification done to the cycle-accurate sim-
ulator is the support of a TLM interface and an interruption
mechanism. Since the functional simulator already implements
the TLM interface, we reused the same code with some
modifications to the interruption mechanism. According to the
specifications in [17], the R3000 pipeline implements precise
exceptions mechanism in order to avoid any type of pipeline
anomalies. When an interrupt occurs, a ’trap’ instruction is
inserted in the IF-stage. The instructions in the pipeline finish
their execution normally. When the ’trap’ instruction reaches
the WB-stage, it signals that the pipeline is now empty, and

that the execution of the interrupt service routine is allowed.

B. Modifications for variable pipeline depth

As we discussed in section IV-A, a SystemC module is
generated for each pipeline stage by "actsim’. Our objective is
to duplicate an existing stage such as EX, into many stages,
without creating a SystemC module for each of them and
without recompiling the platform. The first EX-stage executes
the real instruction behavior, and the latters are dummy EX-
stages. They just forward the instruction data from one stage
to the other, until it reaches the MEM-stage. In this way, an
execution unit, such as FPU, can be simulated with variable
execution time.

The traditional solution for adding a new pipeline stage
requires modification of the ac_pipe variable in AC_ARCH
file, regeneration then recompilation of the cycle-accurate
model. This procedure should be repeated each time a new
stage is added to the design. In addition, the r3000_isa.cpp
should also be modified manually for each new architectural
modification. Of course, this is not a handy process since it
takes lot of development and debugging efforts.

Another alternative is to generate fixed maximum pipeline
stages (i.e: 20 EX stages), then bypass the stages which does
not take part in the simulation process. This static approach
is not optimal, since it requires the generation of a SystemC
module for each extra EX-stage, and the integration of a large
complex ISA description file.

Our solution applies a dynamic approach with no simulator
regeneration and recompilation. We denote by EXi the it"
extra EX stage. The AC_ARCH architecture description file
remains the same as the 5-stage pipeline. We overload the
processor constructor to take as input the desired number of
extra stages. Then, the constructor instantiates the stages with
their corresponding I/O signals and pipeline registers, and
connects them dynamically to the other stages of the pipeline.
For example, EX1 is connected to EX and EX2 stages, and
EXn is connected to EXn-1 and MEM stage, where n is the
total number of extra stages. The variable pipeline depth cycle-
accurate model is shown in Figure 4.

Pipe stage

[
£

—— Instruction flow

MIPS-I

= = —p Extra EX-stages & reg
R3000
IF/
‘ IF I E n[= = —‘ EXn EM
32 Reglster Files

ac_mem
clk
Memory

Figure 4. Variable pipeline depth R3000 cycle-accurate model for
SoC simulator integration

TLM I/O interface =~ > Clock signal

Double buffered register ~~ — .. » Inter-pipe Sync signal

ac_tim_intr_port

The impact of the variable pipeline depth model on
the execution process is elaborated in more details in the
following subsections.

1) Pipeline anomalies: Implementing the variable pipeline
depth model arises new data and branch hazards, which were
previously resolved in the 5-stage pipeline.

The data hazards are the effect of data dependence be-
tween two instructions executed in the pipeline. In the 5-
stage pipeline, ’'register forwarding’ solves this problem by
bypassing values in late pipeline stages to earlier stages,
hence no pipeline stalls will occur due to data hazards.
However, when adding extra EXn stages, the data dependence
check changes and a modified implementation of a ’register
forwarding’ technique is required. An instruction in the ID-
stage checks the EX-stage first, then the extra EXn stages,
and finally the MEM and WB stages. The search stops when
the first instruction that holds the desired data for its operands
is found. The data is forwarded back to the instruction in the
ID-stage. The same procedure is repeated for an instruction in
the EX-stage.

Pipeline stalls occur in the 5-stage pipeline when a branch
instruction in the ID-stage requires a value from a further
instruction in the pipeline, and the latter did not compute it
yet. The maximum latency is 1 cycle. In the variable pipeline
model, the stalls can occur on ID (branch hazards) and EX
(data hazards) stages. This happens when an instruction in the
EX-stage depends on an instruction (load instruction) that is
still in the extra EXn stages, and that is waiting for memory
access in MEM-stage. In this case, the pipeline should be
stalled until the instruction in the extra EXn stages has finished
its execution. In the 5-stage pipeline, this phenomenon does
not occur, because the dependent instruction is already in the
MEM-stage and register forwarding is implemented. The same
reasoning is applied for branch instructions in the ID-stage.

In summary, we can see that in the variable pipeline depth
model, the number of pipeline stalls varies according to the
number of extra pipeline stages, as well as the instructions’
dependency window in the program code.

2) ISA description file: Having a customized processor
architecture necessitates a customized ISA description in
r3000_isa.cpp file. The ISA description should be able to run
properly for any number of pipeline stages. In [9], we see the
implementation of the Type_R format behavior description for
a 5-stage pipeline. Register forwarding is performed in the for-
mat behavior description (Type_R and Type_I), while branch
hazards are checked in the ID stage of the "branch instructions’
behavior description (i.e: ac_behavior(beq), ac_behavior(jr)).
Therefore, the ISA description modifications should be done
for these 2 parts of the code in order to be generic. In
Figure 5, we show the modifications in the EX-stage of
the Type_R format behavior description, when checking the
'rs’ operand register. The pseudo-code corresponds to the
discussion we have conducted in section IV-B1. The same
dependency is applied for the ’rt’ operand register. The ID-

stage is implemented in a similar technique as the EX-stage.
Notice the call of the pipeline stall function G_EX.stall(),
when a dependency is found and cannot be resolved.

void ac_behavior(Type_R)
SWITCH (stage)
{
CASE id_G_EX:
/% check pipeline stall condition =/
FOR (i=0; i < (pipe_length — 5); i++)

IF (a forwarding value exist in the extra EXn stages)
BREAK;

IF (a forwarding value exist) OR
(a load instruction to one of the operand registers is in the MBEM stage)
IF (!G_ID.is_stalled ())
G_ID. stall (); /% stall the ID—stage =*/

G_EX. stall (); /% stall the EX—stage =/

}
/% Checking forwarding for the rs register s/
FOR (int i=0; i < (pipe_length — 5); i++) {
IF (register writeback is found in the extra EXn stages) {
/* Get the writeback value =/
BREAK ;
}

IF (no register writeback in the extra EXn stages) {

IF (register writeback in MBM stage)
/+ Get the writeback value =/

ELSE IF (register writeback in WB stage)

/% Get the writeback value =/

ELSE
/% Get the value from the ID—stage register x*/

//1 Instruction jr behavior method.
void ac_behavior(jr)

SWITCH (stage)
{

CASE id_G_ID:
IF (no interruption in progress)

/* Stalls the pipeline if the jump instruction depends on other instruction x/
FOR (i=0; i < (pipe_length — 5); i++) {

IF (a load instruction to one of the operand registers
is in one of the EXn stages) {

/% a dependency is found in one of the EXn stages s/
BREAK ;

}

IF (a dependency is found in one of the EXn stages) OR
(a dependency is found in the MEM stage) {

G_ID.stall (); /+ stall the ID—stage s/

ELSE

}

/% Jump to the new address =/

Figure 5. Modified Type_R format behavior description

As for the branch instructions, their ID-stage is modified so
that it checks the extra EXn stages and stalls the pipeline if
the dependence cannot be resolved. A pseudo-code for the jr
instruction is shown in Figure 6.

Finally, a ’trap’ instruction is added to the ISA description
for proper pipeline interruption mechanism as discussed in
Section IV-A. The application code does not have to be
aware of this instruction, since the processor control part
automatically inserts it in the IF-stage when an interruption
occurs.

V. PIPELINE STATISTICS AND DEBUG

The performance evaluation of our cycle-accurate model
necessitates the extraction of pipeline statistic values. Any
degradation in the processor performance is mainly due to
pipeline stalls. Those stalls arise from two types of sources:
data dependencies (data and control hazards), and pipeline
interlocks. The latter is due to memory access latencies when
load/store instructions are in the MEM stage. In our model,
we measure the total number of pipeline stalls due to data
dependencies and pipeline interlocks. In addition, we sort
them as a function of the number of stall cycles v/s the

Figure 6. Modified ID stage for jr instruction behavior

number of occurences. In this way, we can know which type of
instructions or series of instructions cause the most pipeline
latencies, and dimension the processor pipeline accordingly.
Furthermore, we are able to know which instructions missed
the instruction or data caches by reading the occurence of
the stalls for a specific latency. For example, if the cache
and memory access needs 2 and 10 cycles respectively, then
by reading the total number of stalls for these latencies we
can deduce the percentage of cache misses. The code that
measures those statistics is inserted in the processor model
and the results are displayed automatically at the end of the
program execution.

Moreover, we generate log files at the end of the program
execution for all the processor pipeline activities. For every
instruction in the ISA and for each pipeline stage, we integrate
a debugging information that displays the currently existing in-
struction, stage, operands, and pipeline status (whether stalled
or not). This is extremely useful for visualizing the program
execution in the pipeline and solving ISA problems. In order to
set the debug option, we include -DDEBUG_PROC_PIPE and
-DDEBUG_PROC_REG_RB options in the Makefile before
generating the model.

VI. RESULTS

The MIPS-I cycle-accurate ISS model simulates the proces-
sor performance almost as accurate as the RTL model. This
advantage comes at the expense of the simulation speed. For
this reason, we will conduct 2 experiments that investigate
the different ArchC models simulation speed, as well as their
pipeline accuracy levels.

Our simulations were performed on an Intel(R) Core(TM)
2 Quad CPU running at 2.83 GHz with 10 GB of RAM.
They are launched from a python script, which generates
4 executing threads, each corresponding to one simulation,

Functional Cycle-accurate
SC_METHOD SC_THREAD
Program # of Perf. S-stages S-stages 6-stages 7-stages 8-stages 9-stages
instructions (KIPS) Perf. (KIPS) Perf. (KIPS) | Perf. (KIPS) | Perf. (KIPS) | Perf. (KIPS) | Perf. (KIPS)
bitcount 45593673 12061.82 121.74 41.46 28.26 29.33 23.62 17.78
gsort 14412622 11911.26 124.09 42.73 29.68 21.22 20.06 15.86
susan(corners) 3458871 11529.57 125.19 43.15 35.08 23.38 18.89 18.8
susan(edges) 6887632 11875.23 124.55 43.53 29.41 24.1 21.31 17.54
susan(smoothing) 35320188 10935.04 126.56 44.26 34.04 24.86 20.33 13.55
Jjpeg_encoder 29474822 11789.93 122.51 35.27 31.9 26.3 20.98 13.79
jpeg_decoder 8697310 11295.21 132.04 38.29 36.11 22.46 21.48 16.75
stringsearch 279724 11811.45 123.23 34.07 25.22 19.78 21.05 14.13
rijndael_encoder 33715297 11546.33 131.06 34.74 30.68 24.78 22.56 17.98
rijndael_decoder 34684743 11757.54 132.92 36.12 3791 24.8 21.56 17.39
sha 13036286 11639.54 133.8 38.81 38.63 32.08 25.93 17.4
adpcm_encoder 34628835 12501.38 113.77 39.5 32.6 26.71 19.65 14.22
adpcm_decoder 27256673 12114.08 114.76 39.65 32.56 26.8 22.38 13.71
adpcm_timing 300730080 11933.73 114.74 32.17 26.22 21.64 22.61 15.89
CRC32 31643638 11896.1 128.98 43.56 29.69 19.4 17.96 8.84
gsm_encoder 32663572 11921.01 130.64 38.01 37.88 25.1 2491 14.13
gsm_decoder 9614567 11869.83 135.38 37.22 34.35 22.35 18.09 12.3
Table I

MIBENCH BENCHMARK SUITE ON MIPS-I FUNCTIONAL MODEL, MIPS-I R3000 CYCLE-ACCURATE MODEL WITH SC_METHOD, SC_THREAD, AND
VARIABLE PIPELINE DEPTH

and affines them to one CPU core. We simulate most of the
MiBench embedded benchmark suite [2] that is already cross-
compiled to MIPS-I architecture and is available on [18]. For
all the experiments, the models are simulated with an infinite
cache. Therefore, there are no performance degradations due
to ’pipeline interlocks’ or long latencies memory operations.
The only source of performance degradation is the pipeline
stall due to control/data hazards.

In the first experiment, we show the differences in the
simulation speed between a MIPS-I functional model, MIPS-
I R3000 cycle-accurate model with SC_METHOD stages
and MIPS-I R3000 cycle-accurate model with SC_THREAD
stages. The latter is simulated for different pipeline lengths
which correspond to the extra EXn stages (n=0,1,2,3,4). The
results are shown in Table I.

As expected, the simulation speed drops to an approxi-
mate ratio of 100 between the functional and cycle-accurate
SC_METHOD models, and 3.5 between the cycle-accurate
SC_METHOD and SC_THREAD models. This difference
between the SC_METHOD and SC_THREAD models is due
to lot of context switches in the SystemC kernel for the
SC_THREAD modules. However, this solution is important
for multiprocessor and SoC simulations as previously dis-
cussed in Section IV-A. We notice also that the simulation
speed drop varies by adding an extra EX stage, since the
number and penalty cycles of pipeline stalls changes from one
application to the other.

According to [19], the simulation speed of SimpleScalar and
MC-Sim (based on SESC simulator) are around 150 KIPS and
32 KIPS respectively. The former is a standalone architecture
while the latter is integrated in an MPSoC design. We can
reach similar values with the SC_METHOD model (standalone
architecture) and SC_THREAD model (MPSoC).

The second experiment shows the efficiency of the cycle-

accurate SC_THREAD model by calculating the CPI (clock
per instruction) for each pipeline length for the MiBench
programs. By using the pipeline statistics information, we are
able to measure the penalty cycles of the different pipeline
stalls, and categorize them accordingly. In Figure 7, we show
the results for pipeline configurations with no extra EXn
stages (5-stage pipeline) and with 3 extra EXn stages (8-
stage pipeline). For the 5-stage pipeline, all the stalls have a 1
cycle penalty because we implement the ’register forwarding’
technique. We see also that the CPI varies with respect to
the application code, which was not possible to detect with
the functional ISS model. As for the 8-stage pipeline, the
CPI increases for all the applications, since the extra EXn
stages introduce new dependencies. In addition, the stalls
penalty cycles are more severe and can reach 4 cycles. In
recent processor architectures such as the Pentium (20-stage
pipeline), the penalties due to pipeline dependencies in a large
pipeline depth can be resolved with an out-of-order processing.
These penalties would be more severe if the memory model
is simulated accurately with a latency access.

VII. CONCLUSION AND FUTURE WORKS

This paper presented a cycle-accurate ISS model based on
ArchC 2.0 and MIPS-I R3000 architecture, with a parame-
terizable number of EX stages. The ISA description is inde-
pendent from the number of pipeline stages. The techniques
that have been developed, both for standalone architecture
(using SC_METHOD) and multiprocessor architecture (using
SC_THREAD) are efficient. With a reasonable development
effort, they allow to build fast cycle-accurate instruction set
simulators that will be used to evaluate performance of var-
ious multi-thread and multi-core architectures for embedded
systems.

The model is validated by executing the MiBench embedded

E fijndael_encoder

(a)
gsm_decoder

gsm_encoder

CRC32

adpem_timing

adpcm_decoder

atperm_encoder

sha
findael_decoder
mstal 1 cycle
stringsearch
jpea_decoder
jpeq_encoder

susan(smoot hing)

susan{corners)
gsort

bitcount

09

Figure 7.

benchmark suite on different pipeline configurations. The
applications’ CPI performances are measured, while differen-
tiating the type of stalls as well as their penalty cycles. Results
show the ability to dimension the processor architecture ac-
cording to the characteristics of each application code.

In our first implementation, we allow the EX-stage to have
a variable length. However, future enhancements of the model
will allow the parameterization of any pipeline stage and
adapt the ISA accordingly. Also, possible extensions to the
ArchC language would be the support of different processor
components and out-of-order architectures.

[1]
[2]

[3

[t}

[4

=

[5

=

[6]

[7]

REFERENCES

A. A. Jerraya and W. Wolf. Multiprocessor Systems-on-Chips. Elsevier,
2005.

M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and
R.B. Brown. Mibench: A free, commercially representative embedded
benchmark suite. In Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop on, pages 3—14, Dec. 2001.

Rainer Leupers and Peter Marwedel. Retargetable code generation
based on structural processor descriptions. In In Design Automation for
Embedded Systems, pages 1-36. Kluwer Academic Publishers, 1998.
A. Fauth, J. Van Praet, and M. Freericks. Describing instruction set
processors using nml. In EDTC ’95: Proceedings of the 1995 European
conference on Design and Test, page 503, Washington, DC, USA, 1995.
IEEE Computer Society.

G. Hadjiyiannis, S. Hanono, and S. Devadas. Isdl: An instruction
set description language for retargetability. In Design Automation
Conference, 1997. Proceedings of the 34th, pages 299-302, Jun 1997.
Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh Khare, Nikil Dutt,
and Alex Nicolau. Expression: a language for architecture exploration
through compiler/simulator retargetability. In DATE ’99: Proceedings
of the conference on Design, automation and test in Europe, page 100,
New York, NY, USA, 1999. ACM.

Wei Qin, Subramanian Rajagopalan, and Sharad Malik. A formal
concurrency model based architecture description language for synthesis
of software development tools. In LCTES ’04: Proceedings of the 2004
ACM SIGPLAN/SIGBED conference on Languages, compilers, and tools
for embedded systems, pages 47-56, New York, NY, USA, 2004. ACM.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

(®)
e s —
gsm_encorer [T T
cres2 I I
adperm_timing [I
e — .|
adpern_sncoder [
she [T
. 1 Didesl CAI
Finceel_decoder [T TN
E J mStall 1 cycle
& tinsel_encoder [T OStall 2 cycles
[N 1 DStall 3 cycles
stingsesrch [T aStal 4 cacos
|peg_decoder | |]
Rl e E— |
susan(srmoothing) T | |
susan(erges) [TN | I
susanfcorners) [T NN | N
asort T]
vitcount [I I
[nR=} 1 11 12 13 14 15 16

CPI performance for MiBench suite for different number of extra EXn stages. (a) EXn=0 (b) EXn=3

Stefan Pees, Andreas Hoffmann, Vojin Zivojnovic, and Heinrich Meyr.
Lisa—machine description language for cycle-accurate models of pro-
grammable dsp architectures. In DAC °99: Proceedings of the 36th
annual ACM/IEEE Design Automation Conference, pages 933-938, New
York, NY, USA, 1999. ACM.

M. Bartholomeu G. Araujo C. Araujo R. Azevedo, S. Rigo and E. Bar-
ros. The ArchC Architecture Description Language and Tools. Parallel
Programming, 33(5):453-484, 2005.

S. Rigo, G. Araujo, M. Bartholomeu, and R. Azevedo. Archc: a systemc-
based architecture description language. In Proc. 16th Symposium on
Computer Architecture and High Performance Computing SBAC-PAD
2004, pages 6673, 2004.

G. Beltrame, C. Bolchini, L. Fossati, A. Miele, and D. Sciuto. Resp:
A non-intrusive transaction-level reflective mpsoc simulation platform
for design space exploration. In Proc. Asia and South Pacific Design
Automation Conference ASPDAC 2008, pages 673-678, 2008.

M. R. de Schultz, A. K. I. Mendonca, F. G. Carvalho, O. J. V. Furtado,
and L. C. V. Santos. Automatically-retargetable model-driven tools for
embedded code inspection in socs. In Proc. 50th Midwest Symposium on
Circuits and Systems MWSCAS 2007, pages 245-248, 5-8 Aug. 2007.
N. Kavvadias and S. Nikolaidis. Elimination of overhead operations in
complex loop structures for embedded microprocessors. 57(2):200-214,
Feb. 2008.

Open SystemC Initiative:. http://www.systemc.org.

C. Araujo, M. Gomes, E. Barros, S. Rigo, R. Azevedo, and G. Araujo.
Platform designer: An approach for modeling multiprocessor plat-
forms based on systemc. Design Automation for Embedded Systems,
10(4):253-283, 2005.

Sandro Rigo, Marcio Juliato, Rodolfo Azevedo, Guido Aratjo, and Paulo
Centoducatte. Teaching computer architecture using an architecture
description language. In WCAE '04: Proceedings of the 2004 workshop
on Computer architecture education, page 6, New York, NY, USA, 2004.
ACM.

John L. Hennessy and David A. Patterson. Computer Architecture,
Fourth Edition: A Quantitative Approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2006.

ArchC official website. http://archc.sourceforge.net/.

J. Cong, K. Gururaj, G. Han, A. Kaplan, M. Naik, and G. Reinman. Mc-
sim: An efficient simulation tool for mpsoc designs. In Proc. IEEE/ACM
International Conference on Computer-Aided Design ICCAD 2008,
pages 364-371, 2008.

